LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc.DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - APRIL 2019
16 17 /18UMT1MC02- ANALYTICAL GEOMETRY OF 2D, TRIG. MATRICES

Date: 05-04-2019
Dept. No. \square
Time: 01:00-04:00

PART - A

ANSWER ALL QUESTIONS

$(10 X 2=20)$

1. Expand \qquad
2. Write down the expansion of \qquad

3. State Cayley Hamilton theorem.
4. Find the eigenvalues of the matrix $A=\left(\begin{array}{ccc}\vdots & 1 & 0 \\ 2 & 2 & 1 \\ d & 0 & 2\end{array}\right)$
5. Define Conic.
6. Find the centre of the ellipse $9_{x^{2}-+} 2^{2} y^{2}=\underbrace{}_{x-1} 00{ }_{y-1} 16=0$.
7. What is the length of the latus rectum of the hyperbola?
8. Write down the equation for distance between points (nd ((2, o)

PART - B

ANSWER ANY FIVE QUESTIONS

$$
(5 X 8=40)
$$

12.

14.

Verify Cayley Hamilton theorem for $\mathrm{A}=\left(\begin{array}{ccc}1 & 0 & -2 \\ 2 & 2 & 4 \\ 0 & 0 & 2\end{array}\right)$.
16. Find the eigenvalues and eigenvectors of $A=\left(\begin{array}{ccc}10 & -2 & -5 \\ -2 & 2 & 3 \\ -5 & 3 & 5\end{array}\right)$.
17. Find the focus, vertex and the directrix of the parabola ${ }_{y=}^{2}=\left.\sum_{x}^{\frac{2}{5}}\right|^{\circ} ; \quad ; \quad ;=0$.

PART - C

ANSWER ANY TWO QUESTIONS
$(2 X 20=40)$
19. (a) Express $\cos \xi_{3 \theta}{ }^{\text {in }}{ }^{\text {t } \mathrm{te}_{r m} \text {; of }}$
(b) Expand $\sin ^{3} \theta \mathrm{c}^{\mathrm{S}}{ }^{5} \theta$ in a series of sines of multiples of θ.
20. (a) If $\cos \left(\begin{array}{c}\text { and } \sin ^{3} \theta \cos ^{5} \theta \text { in a series or sinet or } 32 x \\ x+t y)=\cos \theta+t \sin \theta \text {, prove that cos }\end{array}\right.$ cosh $2 y=2$.
(b) Find the real part and imaginary part of $\tan ^{-1}(x+i y)$.
21. Diagonalise the matrix $A=\left(\begin{array}{lll}2 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2\end{array}\right)$
22. (a) If the focus, centre and eccentricity of an ellipse are respectively $(2,3),(3,4)$ and $\frac{1}{2}$, find its equation.
(b) Show that the feet of the perpendiculars from the origin on the sides of the triangle formed by the points $\theta=\alpha, \theta=\beta$ and $\theta=\gamma$ on the circle $r=2 a \cos \theta$ lie on the straight line.

