Answer ALL the questions

1. a) Prove that a group of order 72 is not simple.

OR
b. Let G be a finite group. Then prove that $C_{a}=O(G) / O(N(a))$ i.e., the number of elements conjugate to ' a ' in G is the index of the normalizer of ' a ' in G. Also prove that $a \in Z$ iff $N(a)=G$.
c) If p is a prime number such that p^{α} divides order of G then prove that G has a subgroup of order p^{α}.

OR

d) If p is a prime number and p divides $O(G)$ then G has an element of order p.
e) Prove that any group of order $11^{2} .13^{2}$ is abelian.
2. a) State and prove Division Algorithm.

OR

b) If $f(x)$ and $g(x)$ are primitive polynomials then prove that $f(x) g(x)$ is also a primitive polynomial.
c) $O(G)=p^{n}$ where p is the prime number then $Z(G) \neq e$ i.e., $O(G)>I$. In other words a group of prime orders must always have a nontrivial centre. Also prove that if $O(G)=p^{2}$ where p is a prime number then G is abelian.
d) If $f(x)$ and $g(x)$ are two nonzero polynomials, then prove that $\operatorname{deg}(f(x) g(x))=\operatorname{deg}(f(x))+$ $\operatorname{deg}(g(x))$.

OR

e) State and prove Gauss Lemma.
f) Let $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$ be a polynomial with integer coefficients. Suppose for some prime number $p, p \nmid a_{n}, p\left|a_{1}, p\right| a_{2}, \ldots, p \mid a_{0}, p^{2} \nmid a_{0}$ then prove that $f(x)$ is irreducible over Q.
3. a) The elements in K which are algebraic over F form a subfield of K.
OR
b) Let Q be the rationals. Then show that $Q(\sqrt{2}, \sqrt{3})=Q(\sqrt{2}+\sqrt{3})$.
c) The element $a \in K$ is said to be algebraic over F iff $F(a)$ is a finite extension over F.

OR

d) If L is the finite extension of K and K is the finite extension of F then prove that L is the finite extension of F.
e) If L is the finite extension of F and K is the subfield of L which contains F then prove that $[K: F]$ divides $[L: F]$.
4. a) If F is of characteristic 0 and a, b are algebraic over F, then show that there exists an element $c \in F(a, b)$ such that $F(a, b)=F(c)$.

OR

b) Find the degree of the splitting field $x^{3}-2$ over Q and $x^{4}+x^{2}+1$ over Q.
c) State and prove fundamental theorem of Galois Theory.

OR
d) Let K be a normal extension of F and let H be a subgroup of $G(K, F), K_{H}=\{\mathrm{x} \in K / \sigma(x)=$ $x \forall \sigma \in H\}$
is a fixed field of H then prove that (i) $\left[K: K_{H}\right]=O(H)$, (ii) $H=G\left(K, K_{H}\right)$. In particular, $H=$ $G(K, F)$,
$[K: F]=O(G(K, F))$.
5. a) Let G be a finite abelian group. Show that the relation $x^{n}=(e)$ is satisfied by at most n elements of G for every positive integer n then prove that G is a cyclic group.

OR
b) Prove that the polynomial $f(x) \in F[x]$ has multiple root iff $f(x)+f^{\prime}(x)$ have a nontrivial common factor.
c) Prove that any finite division ring is necessarily a commutative field.

OR
d) Prove that S_{n} is not solvable for $n \geq 5$ and verify S_{3} is solvable.

