A STATE	LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 M.Sc., DEGREE EXAMINATION - MATHEMATICS SECOND SEMESTER – APRIL 2019 18PMT2MC01/MT 2810 - ALGEBRA
Da Tin	te: 03-04-2019 Dept. No. Max. : 100 Marks
Answer ALL the questions	
1.	a) Prove that a group of order 72 is not simple.
	OR (5) b. Let <i>G</i> be a finite group. Then prove that $C_a = O(G)/O(N(a))$ <i>i.e.</i> , the number of elements conjugate to ' <i>a</i> ' in <i>G</i> is the index of the normalizer of ' <i>a</i> ' in <i>G</i> . Also prove that <i>a</i> Z <i>iff</i> $N(a)=G$.
	c) If p is a prime number such that p^{α} divides order of G then prove that G has a subgroup of order p^{α} . (15)
	OR
	d) If p is a prime number and p divides $O(G)$ then G has an element of order p . (8) e) Prove that any group of order $11^2 \cdot 13^2$ is abelian. (7)
2.	a) State and prove Division Algorithm.
	b) If $f(x)$ and $a(x)$ are primitive polynomials then prove that $f(x)a(x)$ is also a primitive polynomial.
	c) $O(G) = p^{x}$ where <i>p</i> is the prime number then $Z(G) = e$ i.e., $O(G) > I$. In other words a group of prime
	orders must always have a nontrivial centre. Also prove that if $Q(G) = p^2$ where p is a prime
	number then G is abelian. (8)
	d) If $f(x)$ and $g(x)$ are two nonzero polynomials, then prove that $deg(f(x)g(x)) = deg(f(x)) + deg(g(x))$. (7) OR
	e) State and prove Gauss Lemma
	(8) f) Let $f(x) = a_0 + a_1 x + + a_n x^n$ be a polynomial with integer coefficients. Suppose for some
	prime number $p, p \nmid a_n, p \mid a_1, p \mid a_2, \dots, p \mid a_0, p^2 \nmid a_0$ then prove that $f(x)$ is irreducible over Q. (7)
3.	a) The elements in K which are algebraic over F form a subfield of K . OR (5)
	b) Let Q be the rationals. Then show that $Q(\sqrt{2}, \overline{3}) = Q(\sqrt{2} + \overline{3})$.
	c) The element $a \in K$ is said to be algebraic over F iff $F(a)$ is a finite extension over F . (15) OR
	d) If L is the finite extension of K and K is the finite extension of F then prove that L is the finite extension of F . (10)

e) If L is the finite extension of F and K is the subfield of L which contains F then prove that [K:F]divides [L:F]. (5) 4. a) If F is of characteristic 0 and a, b are algebraic over F, then show that there exists an element c F(a, b) such that F(a, b) = F(c). (5) OR b) Find the degree of the splitting field x^3 -2 over Q and $x^4 + x^2 + 1$ over Q. c) State and prove fundamental theorem of Galois Theory. (15)OR d) Let K be a normal extension of F and let H be a subgroup of G(K,F), $K_H = \{x \mid K \neq \sigma(x) = x \}$ $x \forall \sigma \in H$ is a fixed field of H then prove that (i) $[K:K_H] = O(H)$, (ii) $H = G(K,K_H)$. In particular, H =G(K,F), [K:F] = O(G(K,F)).5. a) Let G be a finite abelian group. Show that the relation $x^n = (e)$ is satisfied by at most n elements of G for every positive integer n then prove that G is a cyclic group. OR (5) b) Prove that the polynomial $f(x) \in F[x]$ has multiple root iff f(x) + f'(x) have a nontrivial common factor.

c) Prove that any finite division ring is necessarily a commutative field.

d) Prove that S_n is not solvable for n = 5 and verify S_3 is solvable.

(15)