LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc.DEGREE EXAMINATION -MATHEMATICS

SECOND SEMESTER - APRIL 2019
MT 2503- ANALY. GEOM. OF 3D, FOURIER SERIES \& NUM. THEORY

Date: 04-04-2019
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

PART-A $\quad(10 \times 2=20)$
Answer all questions:
[1]Find the distance of the origin from the plane $6 x-3 y+2 z-14=0$.
[2]Find the equation of the plane through $(1,1,1)$ and the line of intersection of the planes $x+2 y-z+1=0 ; 3 x-y+4 z-3=0$.
[3]Find the equationof the sphere with centre $(-1,2,-3)$ and radius 3 units.
[4]Find the equation of the tangent plane to the sphere $\left(x^{2}+y^{2}+z^{2}\right)-4 x-4 y-2 z-22=0$
at the point $(2,3,1)$.
[5] State two properties of even and odd periodic functions.
[6] State Dirichlet's conditions.
[7] Find the number of divisors of 720 .
[8] Find $\phi(729)$.
[9]Show that $n^{n}>1.3 .5 \ldots .(2 n-1)$.
[10]State Weirstrass inequalities.
PART-B $\quad(5 \times 8=40)$
Answer any FIVE
[11]Find the equation of the plane passing through the points $(3,1,2)(3,4,4)$ and perpendicular to the plane $5 x+y+4 z=0$.
[12] Find the image of the point $(1,-2,3)$ in the plane $2 x-3 y+2 z+3=0$.
[13]Find the equation to a sphere through the four points $(2,3,1)(5,-1,2)(4,3,-1)$ and $(2,5,3)$.
[14]Find the equation of a sphere which touches the sphere $x^{2}+y^{2}+z^{2}-6 x+2 z+1=0$ at the point $(2,-2,1)$ and passes through the origin.
[15] Find the Fourier series for $f(x)=x,-\pi \leq x \leq \pi$.
[16] Find the smallest number with 18 divisors.
[17] If x and y are positive quantities whose sum is 4 ,show that $\left(x+\frac{1}{x}\right)^{2}+\left(y+\frac{1}{y}\right)^{2} \nless 12 \frac{1}{2}$. [18]Show that if a, b, c are three positive unequal quantities, then $\frac{a^{8}+b^{8}+c^{8}}{a^{3} b^{3} c^{3}}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$.

PART-C

$(2 \times 20=40)$
Answer any TWO:
[19] (i) Prove that equation of the first degree in x, y, z represents a plane. $\quad(10+10)$
(ii) Prove that the lines $\frac{x+1}{-3}=\frac{y+10}{8}=\frac{z-1}{2} ; \frac{x+3}{-4}=\frac{y+1}{7}=\frac{z-4}{1}$ are coplanar.

Find also their point of contact and the plane through them.
[20] (i) A plane passes through a fixed point ($\overline{a, b, c) \mathrm{a}^{\text {nd }}}$ cuts the axes in A,B,C. Show that the locus of the centre of the sphere OABC is $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2$.
(ii)Show that the plane $2 x-y-2 z=16$ touches the sphere $x^{2}+y^{2}+z^{2}-4 x+2 y+2 z-3=0$ and find the point of contact.
[21] (i)Show that $x^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty}(-1)^{n} \frac{\cos n x}{n^{2}}$ in the interval $-\pi \leq x \leq \pi \cdot(12+8)$
Deduce that (a) $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\cdots=\frac{\pi^{2}}{12}$.
(b) $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{6}$.
(c) $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots=\frac{\pi^{2}}{8}$.
(ii)Find the Fourier series for $f(x)=\frac{1}{2}(\pi-x)$ in the interval 0 to 2π.
[22](i)With how many zeros does 79! Ends?
(ii) Find the remainder obtained in dividing 2^{46} by 47 .
(iii) Show that $\left(x^{m}+y^{m}\right)^{n}<\left(x^{n}+y^{n}\right)^{n}$ if $m>n$.

