LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034
B.Sc. DEGREE EXAMINATION - MATHEMATICS
THIRD SEMESTER – APRIL 2019
MT 3503- VECTOR ANALYSIS & ORDINARY DIFF. EQUATIONS
Date: 25-04-2019 Dept. No. Max. : 100 Marks
Time: 01:00-04:00
Part – A (10 x 2 =20 marks) Answer all questions :
1) Find the directional derivative of $\phi = x + xy^2 + yz^3$ at (0, 1, 1) in the direction of the vector $2\vec{i} + 2\vec{j} - \dot{\vec{i}}$.
2) Show that the vector $A = x^2 z^2 \vec{i} + xy z^2 \vec{j} - xz^3 \vec{k}$ is solenoidal.
3) What is the condition for a vector field to be conservative?
4) Prove that $\nabla \times \nabla \phi = 0$.
5) State Stoke's theorem.
6) Using Gauss divergence theorem show that $\iint_{s} r.n ds = 4\pi a^2$
if S is the surface of the sphere $x^2 y^2 + z^2 = a^2$.
7) Solve $y = (x - a) p - p^2$.
8) Solve $p^2 - 5p + 6 = 0$.
9) Solve $(D^2 + 5D + 6) y = 0$.
10) Find the particular integral of $(D^2 - 3D + 2) y = e^{5x}$.
Part – B (5x8=40 Marks)
Answer any five questions :
11) Show that $\nabla^2 r^n = n \ (n+1)r^{n-1}$.
12) Find the curl and divergence of the vector $\vec{F} = dy^2 \vec{i} + 2x^2 yz \vec{j} - 3yz^2 dz$ at $(1, -1, 1)$.
13) Evaluate $\iiint_v \nabla \cdot F dv if \vec{f} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$ and if V is the volume of the region enclosed by the cube
$0 \leq x, y, z \leq 1.$
14) If $\vec{F} = (3x^2 + 6y)\vec{i} - 14yz\vec{j} + 20xz^2\vec{z}$ and C is the curve $x = t, y = t^2, z = t^3$ from (0, 0, 0) to (1, 1, 1).
15) Solve $xp^2 - 2yp + x = 0$.
16) Solve $\frac{dy}{dx} - y \tan x = \frac{\sin x \cos^2 x}{y^2}$
17) Solve $(D^2 + D + 1) y = e^{-2x}$
18) Solve $\frac{d^2y}{dx^2} + 4y = 4 \tan 2x$ using method of variation of parameters.

Answer any two questions : 19) a) If $\emptyset = x^2 y^3 z^4$ Find (i) $\nabla \cdot \nabla \emptyset$ (ii) $\nabla \times \nabla \emptyset$. b) Find the equation of the tangent plane to the surface $x^2 + 2y^2 + 3z^2 = 6$ at the point (1 -1, 1). (10 + 10) 20) Verify divergence theorem for $A = (x + y)^{\frac{1}{2}} + x_1^2 + z_1^2$ taken over the region V of the cube bounded by the planes x =0, x=1, y=0, y=1, z=0, z=1. 21) a) Solve $[0^2 + 2D + 5] y = xe^x$ b) Solve $[0^2 + 4D + 5) y = e^x + \cos 2x$. (10 + 10) 22) Solve $x^3 \frac{d^3y}{dx^3} + 3x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = x + \log x$.

 $Part - C (2 \times 20 = 40 \text{ Marks})$
