B.Sc.DEGREE EXAMINATION -MATHEMATICS

THIRD SEMESTER - APRIL 2019

MT 3503- VECTOR ANALYSIS \& ORDINARY DIFF. EQUATIONS

Date: 25-04-2019
Time: 01:00-04:00
Dept. No. \square Max. : 100 Marks

$$
\text { Part - A (} 10 \times 2=20 \text { marks })
$$

Answer all questions :

1) Find the directional derivative of $\emptyset=x+x y^{2}+j i z^{3}$ at $(0,1,1)$ in the direction of the vector $2 \vec{\imath}+2 \vec{j}-i t$.
2) Show that the vector $A=x^{2} z^{2} \vec{\imath}+x y z^{2} \vec{\jmath}-x z^{3} \hat{k}$ is solenoidal.
3) What is the condition for a vector field to be conservative?
4) Prove that $\nabla \times \nabla \varnothing=0$.
5) State Stoke's theorem.
6) Using Gauss divergence theorem show that $\iint_{S} r . n d s=4 \pi a^{2}$ if S is the surface of the sphere $x^{2} y^{2}+z^{2}=a^{2}$.
7) Solve $y=(x-a) p-p^{2}$.
8) Solve $p^{2}-5 p+6=0$.
9) Solve $\left(D^{2}+5 D+6\right) y=0$.
10) Find the particular integral of $\left(D^{2}-3 D+2\right) y=e^{5 x}$.

Part - B (5x8=40 Marks)

Answer any five questions :

11) Show that $\nabla^{2} r^{n}=n(n+1) r^{n-1}$.
12) Find the curl and divergence of the vector $\vec{F}=y^{2} \vec{\imath}+2 x^{2} y z \vec{\jmath}-3 y z^{2} ; \vec{i}$ at $(1,-1,1)$.
13) Evaluate $\iiint_{v} \nabla$.F dv if $\vec{f}=x^{2} \vec{\imath}+y^{2} \vec{\jmath}+z^{2} i \vec{i}$ and if V is the volume of the region enclosed by the cube $0 \leq x, y, z \leq 1$.
14) If $\vec{F}=\left(3 x^{2}+6 y\right) \vec{i}-14 y z \vec{\jmath}+20 x z^{2} \overrightarrow{\vec{e}}$ and C is the curve $\mathrm{x}=\mathrm{t}, \mathrm{y}=\mathrm{t}^{2}, \mathrm{z}=\mathrm{t}^{3}$ from $\quad(0,0,0)$ to $(1,1,1)$.
15) Solve $x p^{2}-2 y p+x=0$.
16) Solve $\frac{d y}{d x}-y \tan x=\frac{\sin x \cos ^{2} x}{y^{2}}$
17) Solve $\left(D^{2}+D+1\right) y=e^{-2 x}$.
18) Solve $\frac{d^{2} y}{d x^{2}}+4 y=4 \tan 2 x$ using method of variation of parameters.

Part - C ($2 \times 20=40$ Marks $)$

Answer any two questions :

19) a) If $\emptyset=x^{2} y^{3} z^{4}$ Find (i) $\nabla . \nabla \emptyset \quad$ (ii) $\nabla \times \nabla \emptyset$.
b) Find the equation of the tangent plane to the surface $r^{2}+2 y^{2}+3 z^{2}=6$ at the point (1-1, 1).

$$
(10+10)
$$

20) Verify divergence theorem for $A=(x+y)^{*}+x \vec{\jmath}+z \vec{i}$ taken over the region V of the cube bounded by the planes $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=1, \mathrm{z}=0, \mathrm{z}=1$.
21) a) Solve $\left[D^{2}+2 D+5\right] y=x e^{x}$
b) Solve $\left(D^{2}+4 D+5\right) y=e^{x}+\cos 2 x$.
$(10+10)$
22) Solve $x^{3} \frac{d^{3} y}{d x^{3}}+3 x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=x+\log x$.
