LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc.DEGREE EXAMINATION – **MATHEMATICS**

SIXTH SEMESTER - APRIL 2019

MT 6608– DISCRETE MATHEMATICS

Date: 08-04-2019 Time: 09:00-12:00

ANSWER ALL QUESTIONS:

Dept. No.

Max.: 100 Marks

SECTION - A

 $10 \ge 2 = 20$

- 1) Construct the truth table for $P \land \neg P$.
- 2) Write the dual of $\neg (P \lor Q) \land (P \lor \neg (Q \land \neg S))$.
- 3) Write down the min terms of P and Q
- 4) Obtain the principle disjunctive normal forms of (i) $P \rightarrow Q$ (ii) $\neg (P \land Q)$.
- 5) Define semi group.
- 6) Give an example of (i) finite cyclic monoid and (ii) infinite cyclic monoid.
- 7) Define sub Lattice.
- 8) Let $S = \{a, b\}$. Draw the diagram of $\langle \dots (S), \subseteq \rangle$.
- 9) Define Boolean Algebra.
- 10) Define Boolean homomorphism.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

$5 \times 8 = 40$

- 11) Construct the truth table for $\neg (P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$.
- 12) Show that $((P \lor Q) \land \neg (\neg P \land (\neg Q \lor \neg R))) \lor (\neg P \land \neg Q) \lor (\neg P \land \neg R)$ is a tautology.
- 13) Obtain the principle disjunctive normal forms of $P \rightarrow ((P \rightarrow Q) \land \neg (\neg Q \lor \neg P))$.
- 14) Write the following sentences in the symbolic form
 - (i) Ram opened the book and started to read.
 - (ii) Mark is rich or unhappy.
 - (iii) If the Sun is shining today, then there is no raining.
- 15) Prove that the composition of semigrouphomomorphisms is also a semigroup homomorphism.
- 16) Let (L, \leq) be a Lattice. Then prove that for any $a, b, c \in L$, the inequality $a \oplus (b * c) \leq (a \oplus b) * c$ holds.
- 17) Let $\langle L, \leq \rangle$ be a Lattice. Then prove that for any $a, b \in L$, $a \leq b \Leftrightarrow a * b = a \Leftrightarrow a \oplus b = b$.
- 18) Obtain the values of the Boolean forms (i) $x_1 * (x_1' \oplus x_2)$ (ii) $x_1 * x_2$ (iii) $x_1 \oplus (x_1 * x_2)$

SECTION - C

ANSWER ANY TWO QUESTIONS:

19) (a) Construct the truth table for the following statements (i) $(P \to Q) \land (Q \to P)$

(ii) $(P \lor Q) \lor \neg P$

(b) Obtain the p.d.n.f. of $(P \land Q) \lor (\neg P \land R) \lor (Q \land R)$ (10+10)

20) (a) Define monoid and construct Cayley's table for $\langle 5, +5 \rangle$ and $\langle 5, \times, \rangle$.

(b)Prove that for any commutative monoid (M,*), the set of all idempotent elements of M forms a submonoid. (10+10)

21) (a) State and prove any four properties of Lattices.

(b) Define Lattice homomorphism andLattice endomorphism. (16+4)

22) (a) Show that $(x_1' * x_2' * x_3' * x_4') \oplus (x_1' * x_2' * x_3' * x_4) \oplus (x_1' * x_2' * x_3 * x_4) \oplus (x_1' * x_2' * x_3 * x_4') = x_1' * x_2'$

(b) Let B be a Boolean algebra. Then prove that (i) $(a \oplus b)' = a' * b'$ (ii) $(a * b)' = a' \oplus b'$

(10+10)