LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc.DEGREE EXAMINATION - MATHEMATICS FIRST SEMESTER - APRIL 2019

MT 1503- ANALYTICAL GEOMETRY OF 2D,TRIG. \& MATRICES

Date: 05-04-2019
Dept. No. \square

PART - A

(Answer ALL questions) $\quad(10 \times 2=20)$

1. Write down the expansion of $\sin n \theta$.
2. What is the expansion of $\sin \theta$ in a series of ascending powers of θ.
3. Show that $\operatorname{Cosh}^{2} x-\operatorname{Sinh}^{2} x=1$.
4. Find $\log (1-i)$.
5. When do you say that two matrices are similar?
6. Find the characteristic equation of $\left(\begin{array}{ll}4 & 2 \\ 3 & 3\end{array}\right)$.
7. Write the pole of the line $A x+B y+C=0$ with respect to the parabola
8. What is the condition for the lines $1 x+m y+n=0$ and $I_{1} x+m_{1} y+n_{1}=0$ to be conjugate?
9. Define rectangular hyperbola.
10. Define polar equation of a conic.

PART - B

(Answer any FIVE questions)
11. Express $\frac{\sin 6 \theta}{\sin \theta}$ in terms of $\cos \theta$.
12. Expand $\cos ^{6} \theta$ and $\cos ^{5} \theta$ in series of cosines of multiples of θ.
13. If $\sin (\mathrm{A}+\mathrm{iB})=\mathrm{x}+\mathrm{iy}$, prove that $\frac{x^{2}}{\operatorname{Cosh}^{2} B}+\frac{y^{2}}{\operatorname{Sinh}^{2} B}=1$ and $\frac{x^{2}}{\operatorname{Sin}^{2} A}-\frac{y^{2}}{\operatorname{Cos}^{2} A}=1$.
14. Find the general value of $\log _{(-3)}(-2)$.
15. Verify Cayley Hamilton theorem for the matrix $\left[\begin{array}{rcc}1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3\end{array}\right]$.
16. Chords of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ touch the ellipse $\frac{x^{2}}{\alpha^{2}}+\frac{y^{2}}{\beta^{2}}=\overline{1}$. Find the locus of their poles.
17. Obtain the combined equation of the pair of tangents from the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to the parabola $y^{2}=4 a x$.
18. Show that the product of the lengths of the perpendiculars from any point on a hyperbola to its asymptotes is a constant.

PART - C

(Answer any TWO questions)
19. (a) Expresscos 8θ in terms of $\sin \theta$.
(b) Expand $\sin ^{3} \theta \cos ^{5} \theta$ in a series of sines of multiples of θ.
20. (a) Separate the real and imaginary parts $\tan ^{-1}(x+i y)$.
(b) Deduce the expansion of $\tan ^{-1} x$ in powers of x from the expansion of log (a+ib).
21. Diagonalize the matrix $\left[\begin{array}{ccc}2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right]$.
22. (a) Tangents to a point P to $y^{2}=4 a x$ meet the axis of the parabola at Q and R. If the area of $\triangle P Q R$ is k, find the locus of P.
(b) Find the combined equations of the asymptotes of the hyperbola $a^{2}+2 h x y+b y^{2}+$ $2 g x+2 f y+c=0$ and its conjugates.

