LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 B.Sc.DEGREE EXAMINATION – MATHEMATICS FIRST SEMESTER – APRIL 2019

MT 1503- ANALYTICAL GEOMETRY OF 2D, TRIG. & MATRICES

Dept. No. Max.: 100 Marks Date: 05-04-2019 Time: 01:00-04:00 PART – A (Answer ALL questions) $(10\hat{1} 2 = 20)$ Write down the expansion of sin $n\theta$. 1. What is the expansion of sin θ in a series of ascending powers of θ . 2. Show that $Cosh^2 x - Sinh^2 x = 1$. 3. Find Log (1 - i). 4. 5. When do you say that two matrices are similar? Find the characteristic equation of $\begin{pmatrix} 4 & 2 \\ 3 & 3 \end{pmatrix}$. 6. Write the pole of the line Ax + By + C = 0 with respect to the parabola $v^{2} = 4ax.$ 7. What is the condition for the lines lx + my + n = 0 and $l_1x + m_1y + n_1 = 0$ to be 8. conjugate? Define rectangular hyperbola. 9. 10. Define polar equation of a conic. <u>PART – B</u> (Answer any FIVE questions) $(5\hat{1}8 = 40)$ 11. Express $\frac{\sin 6\theta}{\sin \theta}$ in terms of cos θ. 12. Expand $\cos^6 \theta$ and $\cos^5 \theta$ in series of cosines of multiples of θ . 13. If sin (A + iB) = x + iy, prove that $\frac{x^2}{\cos^2 B} + \frac{y^2}{\sin^2 B} = 1$ and $\frac{x^2}{\sin^2 A} - \frac{y^2}{\cos^2 A} = 1$. 14. Find the general value of $m Log_{(-3)}(-2)$. 15. Verify Cayley Hamilton theorem for the matrix $\begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ 2 & 1 & 2 \end{bmatrix}$.

16. Chords of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{1}{1}$ touch the ellipse $\frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} = \frac{1}{1}$. Find the locus of their poles.

- 17. Obtain the combined equation of the pair of tangents from the point (x_1, y_1) to the parabola $y^2 = 4ax$.
- 18. Show that the product of the lengths of the perpendiculars from any point on a hyperbola to its asymptotes is a constant.

<u>PART – C</u>

(Answer any TWO questions)

(2 Î 20 =40)

19. (a) Expresscos 8θ in terms of $\sin \theta$.

(b) Expand sin ³ θ cos⁵ θ in a series of sines of multiples of θ .

20. (a) Separate the real and imaginary parts $\tan^{-1}(x+iy)$.

(b) Deduce the expansion of $\tan^{-1} x$ in powers of x from the expansion of log (a+ib).

21. Diagonalize the matrix $\begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$.

22. (a) Tangents to a point P to y^2 = 4ax meet the axis of the parabola at Q and R. If the area of Δ PQR is k, find the locus of P.

(b) Find the combined equations of the asymptotes of the hyperbola $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ and its conjugates.
