1

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc.DEGREE EXAMINATION – **MATHEMATICS**

FOURTH SEMESTER – APRIL 2019

MT 4503- ALGEBRAIC STURUCTURE - I

Date: 11-04-2019 Time: 01:00-04:00 Dept. No.

Max.: 100 Marks

Answer ALL questions

- 1. Define equivalence relation.
- 2. Prove that $(ab)^2 = a^2b^2$ for all $a, b \in G$ where G is an abelian group.
- 3. If G is a finite group of order n and $a \in G$, Prove that $a^n = e$.
- 4. Show that every subgroup of an abelian group is normal
- 5. Define automorphism of a group
- 6. Let Z be the set of all integer and $h: Z \to Z$ may be defined by h(x) = 2x. Show that it is a group homomorphism.
- 7. State any two properties of rings.
- 8. If f is a homomorphism of a ring R into a ring R', Prove that f(-a) = -f(a) for all $a \in R$.
- 9. Prove that every field is a principle ideal domain.
- 10. What is a Gaussian integer?

PART – B

Answer any FIVE questions.

- 11. If G is a group, Prove that
 - (i) the identity element of G is unique
 - (ii) every $a \in G$ has a unique inverse in G.
- 12. Show that the set Q^+ of all positive rational numbers forms a group under the operation * defined by $a * b = \frac{ab}{2}$ for all $a, b \in Q^+$.
- 13. Prove that every subgroup of a cyclic group is cyclic.
- 14. Prove that a subgroup N of a group G is a normal subgroup of G if and only if the product of two left cosets of N in G is again a left coset of N in G.
- 15. Prove that every group is isomorphic to a group of permutations.
- 16. If R is a commutative ring with unit element whose only ideals are (0) and R itself, Prove that R is a field.
- 17. Let *R* be a commutative ring with unity, and *M* an ideal of *R*. Prove that if *M* is a maximal ideal of *R* then R/M is a field.
- 18. Prove that every Euclidean ring is a principal ideal domain.

PART –A

(10 X 2 = 20 Marks)

(5 X 8 = 40 Marks)

PART – C Answer any TWO questions.	(2 X 20 = 40 Marks)
19. (i) If H and K are subgroups of G, Prove that HK is a subgroup of G if and only	
if $HK = KH$.	(8)
(ii) If H and K are finite subgroups of a group G, Prove that $o(HK) = \frac{1}{2}$	$\frac{o(H)o(K)}{o(H\cap K)},$ (12)
20. (i) State and prove Lagrange's theorem.	(12)
(ii) Show that the union of two subgroups of a group G is a subgroup of G if and only if one is	
contained in other.	(8)
21. (i) State and prove fundamental theorem of homomorphism of a gro	oup. (12)
(ii) Prove that $A(G)$, the set of automorphisms of a group G is also a group	ıp. (8)
22. (i) Prove that every finite integral domain is a field.	(10)
(ii)Prove that $Z(i)$ is a Euclidean ring.	(10)
