LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc.DEGREE EXAMINATION -MATHEMATICS

FIFTH SEMESTER - APRIL 2019
MT 5509- ALGEBRAIC STRUCTURE - II

Date: 22-04-2019
Time: 09:00-12:00

Dept. No. \square

PART -A
ANSWER ALL THE QUESTIONS:

1. Define linear span.
2. If V is a vector space over a field F , show that $(-a) v=a(-v)=-a v$ fora $a, v \in v \in V$.
3. Find the coordinate vector of $(2,1,-6)$ of R^{3} relative to the basis $\{(1,1,2),(3,-1,0),(2,0,-1)\}$.
4. Define eigen value and eigen vector of the matrix.
5. Define inner product spaces.
6. Define orthonormal set.
7. Show that the matrix $\mathrm{A}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$ is orthogonal.
8. Define trace of A and give an example.
9. Define unitary linear transformation.
10. Find the rank of matrix $\left(\begin{array}{cc}2 & 0 \\ 1 & 1 \\ 1 & -1\end{array}\right)$.

PART - B
ANSWER ANY FIVE QUESTIONS:
11. Prove that the intersection of two subspaces of a vector space V is a subspace of V .
12. If S and T are subsets of a vector space V over F, then prove that
(i) S is a subspace of V if and only if $L(S)=S$.
(ii) $\mathrm{S} \subseteq \mathrm{T}$ implies that $\mathrm{L}(\mathrm{S}) \subseteq \mathrm{L}(\mathrm{T})$.
(iii) $L(L(S))=L(S)$.
13. Let V and W be two n -dimensional vector spaces over F , then prove that any isomorphism T of V onto W maps a basis of V onto a basis of W.
14.State and prove Schwarz inequality.
15.If $\lambda \epsilon F$ is an eigenvalue of $T \in A(V)$, then prove any polynomial $f(x) \in F[x], F(\lambda)$ is an eigenvalue of $f(T)$.
16. If $A, B \in F_{n}$, and $\lambda \in F$, then prove that
(i) $\operatorname{tr}(\lambda A)=\lambda t r A$.
(ii) $\quad \operatorname{tr}(A+B)=\operatorname{tr} A+\operatorname{tr} B$.
(iii) $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
17. Show that any square matrix A can be expressed uniquely as the sum of a symmetric matrix and a skew-symmetric matrix.
18.Solve the system of linear equations
$x_{1}+2 x_{2}+2 x_{3}=5, \quad x_{1}-3 x_{2}+2 x_{3}=-5,2 x_{1}-x_{2}+x_{3}=-3$.
over the rational field.

PART - C

ANSWER ANY TWO QUESTIONS:

19.(a) The vector space V over F is a direct sum of two of its subspace W_{1} and W_{2} if and only if $V=W_{1}+W_{2}$ and $W_{1} \cap W_{2}=(0)$.
(b) If V is a vector space over F, then prove that
(i) $a 0=0$ for $a \in F$
(ii) $0 v=0$ for $v \in V$
20. If V is a vector space of finite dimension and W is a subspace of V, then prove that $\operatorname{dim} \frac{V}{W}=\operatorname{dim} V-\operatorname{dim} W$.
21.Prove that every finite-dimensional inner product space V has an orthonormal set as a basis.
22. (a) If A and B are Hermitian, show that $A B+B A$ is Hermitian and $A B-B A$ is skew-Hermitian.
(b) If $<T(v), T(v)\rangle=\langle v, v\rangle$ for all $v \operatorname{in} V$, then prove that T is unitary.

