LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034	
B.Sc.DEGREE EXAMINATION -MATHEMATICS	
FIFTH SEMESTER – APRIL 2019	
MT 5509– ALGEBRAIC STRUCTURE - II	
Date: 22-04-2019 Dept. No.	Max. : 100 Marks
PART –A	
ANSWER ALL THE QUESTIONS:	(10°X [*] 2 ≅ 20)?0)
1. Define linear span.	
2. If V is a vector space over a field F, show that $(-a)v = a(-v) = -av$ for $a \in F$, $v \in v \in V$.	
3. Find the coordinate vector of (2,1,-6) of R^3 relative to the basis	
$\{(1,1,2), (3,-1,0), (2,0,-1)\}.$	
4. Define eigen value and eigen vector of the matrix.	
5. Define inner product spaces.	
6. Define orthonormal set.	
7. Show that the matrix $A = \begin{pmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \end{pmatrix}$ is orthogonal.	
8. Define trace of A and give an example.	
9. Define unitary linear transformation.	
10. Find the rank of matrix $\begin{pmatrix} 2 & 0 \\ 1 & 1 \\ 1 & -1 \end{pmatrix}$.	
PART - B	
ANSWER ANY FIVE QUESTIONS:	(5 X 8 = 40)
11. Prove that the intersection of two subspaces of a vector space V is a subspace of V.	
12. If S and T are subsets of a vector space V over F, then prove that	
(i) S is a subspace of V if and only if $L(S) = S$.	
(ii) $S \subseteq T$ implies that L(S) \subseteq L(T).	
(iii) $L(L(S)) = L(S)$.	
13.Let V and W be two n-dimensional vector spaces over F, then prove that any	

isomorphism T of V onto W maps a basis of V onto a basis of W.

14.State and prove Schwarz inequality.

15. If $\lambda \in F$ is an eigenvalue of $T \in A(V)$, then prove any polynomial $f(x) \in F[x]$, $F(\lambda)$ is an eigenvalue of f(T).

16. If $A, B \in F_n$, and $\lambda \in F$, then prove that

(i) $tr(\lambda A) = \lambda tr A$.

(ii) tr(A+B) = trA + trB.

(iii) tr(AB) = tr(BA).

17. Show that any square matrix A can be expressed uniquely as the sum of a symmetric

matrix and a skew-symmetric matrix.

18.Solve the system of linear equations

$$x_1 + 2x_2 + 2x_3 = 5$$
, $x_1 - 3x_2 + 2x_3 = -5$, $2x_1 - x_2 + x_3 = -3$.

over the rational field.

PART - C

ANSWER ANY TWO QUESTIONS:

19.(a) The vector space V over F is a direct sum of two of its subspace W_1 and W_2 if and only if $V = W_1 + W_2$ and $W_1 \cap W_2 = (0)$.

(b) If V is a vector space over F, then prove that

(i) a0 = 0 for $a \in F$ (ii) 0v = 0 for $v \in V$

20. If V is a vector space of finite dimension and W is a subspace of V, then prove that $dim\frac{V}{W} = dimV - dimW$.

21.Prove that every finite-dimensional inner product space *V* has an orthonormal set as a basis.

22. (a) If A and B are Hermitian , show that AB + BA is Hermitian and AB - BA is skew-Hermitian.

(b) If $\langle T(v), T(v) \rangle = \langle v, v \rangle$ for all v inV, then prove that T is unitary.

 $(2 \ge 20 = 40)$