B.Sc.]	DEGREE EXA	MINATION – MATHEM	ATICS
学画回 名	SIXTH SEM	ESTER – APRIL 2019	
	MT 6606- (COMPLEX ANALYSIS	
Date: 03-04-2019 Time: 09:00-12:00	Dept. No.		Max. : 100 Marks
	·	Part-A	
Answer ALL The Questions			(10X 2=20)
1. Define an analytic function an 2. Verify Cauchy Riemann equat 3. Define conformal mapping. 4. Find critical point for $w = sin$ 5. Define simply connected regio 6. Find Maclaurin's seriesexpans 7. Evaluate $\int_C \frac{zdz}{z-2}$ where <i>C</i> is the 8. Find the zeros of $f(z) = \frac{z^2+1}{1-z^2}$ 9. Define a bilinear transformation	d give an examplion for $f(z) = z^2$ <i>nz.</i> on. ion for $f(z) = e^{-z^2}$ circle $ z = 1$. on.	le. 3.	
10. Define Removable singularit	у.		
		Part-B	
11. State and prove Laurent's the 12. Let f be analytic in a region I 13. Find bilinear transformation $w_1 = 1, w_2 = i, w_3 = -1$ respect 14. State and prove Liouville's the 15. Evaluate: $\int_C \frac{e^{2z}}{(z+1)} dz$ whe 16. State and prove the fundament 17. State and prove Maximum m 18. State and prove Rouche's the	Forem. D and $f'(z_0) \neq 0$ which maps the p ively. heorem. re C: z = 2 usi ital theorem of a odulus theorem. orem.	for $z_0 \in D$. Prove that f is counts $z_1 = 2, z_2 = i, z_3 = -i$ ing cauchy integral form lgebra.	conformal at z ₀ . -2 onto uula.
		Part C	
Answer Any Two Question		$(20 x^2=40)$	
19.(a) Derive C-R equations as n (b) If $f(z) = u(x, y) + iv(x, y)$	ecessary conditions is an analytic fur	on for $w = f(z)$ to be analyted action and $u(x, y) = \frac{\sin z}{\cosh 2y}$	ic. $\frac{2x}{1+\cos 2x}$, find $f(z)$. (10 +10)
20.(a) Find the image of the circl	e z - 3i = 3 u	nder the map $w = \frac{1}{2}$.	(20,20)
(b) Using contour integration	find $\int_0^\infty \frac{x^2}{(x^6+1)} dx$		
21 State and prove Taylor's The	orem		(8+12)
22.(a) State and prove Cauchy in (b) State and prove Argument	tegral formula . principle		
(o) State and prove in gamen	*	****	(10+10)

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

1