LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **PHYSICS**

SECOND SEMESTER - APRIL 2022

16/17/17UMT2AL01 - MATHEMATICS FOR PHYSICS - II

Date: 27-06-2022 Dept. No. Max.: 100 Marks

Time: 01:00 PM - 04:00 PM

<u>Part A</u>

Answer ALL the questions

 $(10 \times 2 = 20)$

- 1. Evaluate $\int (ax^2 + bx + c)dx$.
- 2. Find the value of $\int_0^{\frac{n}{2}} \cos^6 x dx$.
- 3. Prove that $\int_0^a f(x)dx = \int_0^a f(a-x)dx$. 4. Prove that $\beta(m,n) = \beta(n,m)$.
- 5. Solve $\frac{dy}{dx} + ycotx = cosex$.
- 6. If the roots are real and distinct that is α and β , then what is complementary function?
- 7. Evaluate $\int_0^a \int_0^b xy(x-y)dydx$.
- 8. Find $\frac{\partial(x,y)}{\partial(r\theta)}$ when $x = r\cos\theta$ and $y = r\sin\theta$.
- 9. Find the directional derivative of $\varphi = x^2yz + 4xz^2$ at (1,-2,-1) in the direction of $2\vec{i} \vec{j} 2\vec{k}$.
- 10. Find 'a' such that $(3x-2y+z)\vec{i}+(4x+\alpha y-z)\vec{j}+(x-y+2z)\vec{k}$ is solenoidal.

Part B

Answer any FIVE questions

 $(5 \times 8 = 40)$

- 11. Evaluate $\int \frac{(3x+1)}{(x-1)^3(x+3)} dx$.
- 12. Establish the reduction formula for $I_n = \int tan^n x \, dx$ (n being a positive integer) and hence find the value of $\int_0^{\frac{n}{4}} \tan^3 x \ dx$.
- 13. Solve $I = \int_0^{\frac{\pi}{2}} \log \sin x \, dx$.
- 14. Show that $\frac{2^n \Gamma(n+\frac{1}{2})}{\sqrt{\pi}} = 1.3.5 \dots (2n-1).$
- 15. Solve $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = e^{-x}\sin 2x$.
- 16. Find $x \frac{dy}{dx} + y \log x = e^x x^{1 \frac{1}{2} \log x}$.
- 17. Evaluate $\int_0^{\frac{\pi}{2}} \int_{a(1-\cos\theta)}^a r^2 dr d\theta$.
- 18. Using Green's theorem, evaluate $\int_C \{(3x 8y^2)dx + (4y 6xy)dy\}$ where C is the boundary of the region given by x = 0, y = 0, x + y = 1.

Part C

Answer any TWO questions

 $(2 \times 20 = 20)$

- 19. (a) Derive the reduction formula for $I_n = \int \sin^n x \ dx$. (b) Solve $(D^2 6D + 25)y = e^{2x} + \sin x + x$.

(10+10)

- 20. (a) Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.
 - (b) Show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.

(15+5)

- 21. (a) Change the order of integration and hence evaluate $\int_0^b \int_0^{\frac{a}{b}\sqrt{b^2-y^2}} xy dx dy$. (b) Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$.
 - (15+5)
- 22. (a) Verify Gauss Divergence theorem for $\vec{F}=4xz\vec{\imath}-y^2\vec{\jmath}+yz\vec{k}$ over the cube bounded by x=0, x=1, y=0, y=1, z=0, z=1.

(b) If
$$\vec{F} = x^2 y \vec{i} + y^2 z \vec{j} + z^2 x \vec{k}$$
, then find $curl\ (curl\ \vec{F})$. (15+5)

########