LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **STATISTICS**

SECOND SEMESTER – APRIL 2022

SECTION A

16/17/18/UMT2AL02 - MATHEMATICS FOR STATISTICS- II

Date: 27-06-2022 Dept. No. Time: 01:00 PM - 04:00 PM

ANSWER ALL QUESTIONS.

1. Define least upper bound.

- 2. Define limit of a sequence.
- 3. Prove that if $a_1 + a_2 + \cdots$ converges to s, then $a_2 + a_3 + \cdots$ converges to $s a_1$.
- 4. Give an example of divergent series.
- 5. Define the right hand limit of f at a.
- 6. When you say the subset D of R is of first category?
- 7. Find a suitable point c of Rolle's theorem for $f(x) = (x a)(b x), (a \le x \le b)$.
- 8. Prove that the derivative of a constant function on [a, b] is the identically zero function on [a, b].
- 9. Define upper sum $U[f:\sigma]$ of f corresponding to partition σ .
- 10. What is meant by a subdivision of the closed bounded interval [a, b]?

SECTION B

ANSWER ANY FIVE QUESTIONS.

11. If *A*, *B* are subsets of *S*, then prove that

(i)
$$(A \cup B)' = A' \cap B'$$
 and (ii) $(A \cap B)' = A' \cup B'$.

12. Evaluate the following: (i) $\lim_{n\to\infty} \frac{2n^3+5n}{4n^3+n^2}$ and (ii) $\lim_{n\to\infty} \frac{n^2}{(n-7)^2-6}$.

- 13. If $\sum_{n=1}^{\infty} a_n$ is a convergent series, then prove that $\lim_{n\to\infty} a_n = 0$.
- 14. Prove that the product of two continuous function is continuous.
- 15. If f and g are continuous real valued functions at a and f(a) respectively, then prove that $g \circ f$ is continuous at a.
- 16. Let $f: \mathbb{R}^1 \to \mathbb{R}^1$. For any r > 0 let E_r be the set of all $a \in \mathbb{R}^1$ such that $\omega[f; a] \ge \frac{1}{r}$ then prove that E_r is closed.
- 17. State and prove the Law of mean.
- 18. Let f be a bounded function on the closed bounded interval [a, b], then prove that $f \in \Re[a, b]$ if and only if for each $\varepsilon > 0$, there exists a subdivision σ of [a, b] such that $U[f:\sigma] < L[f:\sigma] + \varepsilon$.

 $(5 \times 8 = 40)$

(4+4)

Max.: 100 Marks

SECTION C

ANSWER ANY TWO QUESTIONS.

19. (a) Define bounded sequence and hence prove that if the sequence of real numbers $\{s_n\}_{n=1}^{\infty}$ is convergent then $\{s_n\}_{n=1}^{\infty}$ is bounded.

(b) Prove that
$$\lim_{n \to \infty} \frac{3n^2 - 6n}{5n^2 + 4} = \frac{3}{5}$$
. (12+8)

20. (a) State and prove Comparison test for series.

(b) Prove that the series
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 is divergent. (10+10)

- 21. State and prove Taylor's theorem.
- 22. (a) If $f, g \in \Re[a, b]$, then prove that $f + g \in \Re[a, b]$ and $\int_a^b (f + g) = \int_a^b f + \int_a^b g$.
 - (b) Let f be a bounded function on [a, b]. If σ and τ are any two subdivisions of [a, b], then prove that $U[f:\sigma] \ge L[f:\tau]$. (12+8)

##########

 $(2 \times 20 = 40)$

(20)