LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - STATISTICS

SECOND SEMESTER - APRIL 2022

16/17/18/UMT2ALO2 - MATHEMATICS FOR STATISTICS- II

Date: 27-06-2022
Dept. No. \square

SECTION A

ANSWER ALL QUESTIONS.

$(10 \times 2=20)$

1. Define least upper bound.
2. Define limit of a sequence.
3. Prove that if $a_{1}+a_{2}+\cdots$ converges to s, then $a_{2}+a_{3}+\cdots$ converges to $s-a_{1}$.
4. Give an example of divergent series.
5. Define the right hand limit of f at a.
6. When you say the subset D of R is of first category?
7. Find a suitable point c of Rolle's theorem for $f(x)=(x-a)(b-x),(a \leq x \leq b)$.
8. Prove that the derivative of a constant function on $[a, b]$ is the identically zero function on $[a, b]$.
9. Define upper sum $U[f: \sigma]$ of f corresponding to partition σ.
10. What is meant by a subdivision of the closed bounded interval $[a, b]$?

SECTION B

ANSWER ANY FIVE QUESTIONS.
11. If A, B are subsets of S, then prove that

$$
\begin{equation*}
\text { (i) }(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime} \text { and (ii) }(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime} \text {. } \tag{4+4}
\end{equation*}
$$

12. Evaluate the following: (i) $\lim _{n \rightarrow \infty} \frac{2 n^{3}+5 n}{4 n^{3}+n^{2}}$ and (ii) $\lim _{n \rightarrow \infty} \frac{n^{2}}{(n-7)^{2}-6}$.
13. If $\sum_{n=1}^{\infty} a_{n}$ is a convergent series, then prove that $\lim _{n \rightarrow \infty} a_{n}=0$.
14. Prove that the product of two continuous function is continuous.
15. If f and g are continuous real valued functions at a and $f(a)$ respectively, then prove that $g \circ f$ is continuous at a.
16. Let $f: R^{1} \rightarrow R^{1}$. For any $r>0$ let E_{r} be the set of all $a \in R^{1}$ such that $\omega[f ; a] \geq \frac{1}{r}$ then prove that E_{r} is closed.
17. State and prove the Law of mean.
18. Let f be a bounded function on the closed bounded interval [a, b], then prove that $\mathfrak{R}[a, b]$ if and only if for each $\varepsilon>0$, there exists a subdivision σ of $[a, b]$ such that $U[f: \sigma]<L[f: \sigma]+\varepsilon$.

SECTION C

ANSWER ANY TWO QUESTIONS.

($\mathbf{2} \times 20=40$)
19. (a) Define bounded sequence and hence prove that if the sequence of real numbers $\left\{s_{n}\right\}_{n=1}^{\infty}$ is convergent then $\left\{s_{n}\right\}_{n=1}^{\infty}$ is bounded.
(b) Prove that $\lim _{n \rightarrow \infty} \frac{3 n^{2}-6 n}{5 n^{2}+4}=\frac{3}{5}$.
20. (a) State and prove Comparison test for series.
(b) Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
21. State and prove Taylor's theorem.
(20)
22. (a) If $f, g \in \Re[a, b]$, then prove that $f+g \in \Re[a, b]$ and $\int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g$.
(b) Let f be a bounded function on $[a, b]$. If σ and τ are any two subdivisions of $[a, b]$, then prove that $U[f: \sigma] \geq L[f: \tau]$.

