LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

SECOND SEMESTER – APRIL 2022

16/17/18UMT2MC01 - ALGEBRA AND CALCULUS - II

 Date: 16-06-2022
 Dept. No.
 Max. 100 Marks

 Time: 01:00-04:00
 Max. 100 Marks
 Max. 100 Marks

Answer ALL questions

<u> PART – A</u>

- 1. Evaluate $\int \sin^2 x \, dx$.
- 2. If f(x) is an odd function, show that $\int_{-a}^{a} f(x) dx = 0$.
- 3. Evaluate $\int_0^1 \int_0^1 xy \, dx \, dy$.
- 4. Find the Jacobian $J\left(\frac{x,y}{r,\theta}\right)$, if $x = r\cos\theta$ and $y = r\sin\theta$.
- 5. Define Gamma function.
- 6. Prove that $\beta(m, n) = \beta(n, m)$, for $m, n \in \mathbb{N}$.
- 7. Show that the sequence $\left\{\frac{n}{n+1}\right\}$ is monotonic
- 8. State Raabe's test.
- 9. Expand $(1 x)^{-1}$ for |x| < 1.

10. Expand $\frac{e^x + e^{-x}}{2}$.

<u> PART – B</u>

Answer any FIVE questions

11. Show that $\int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx = \frac{\pi}{4}.$ 12. Find the area of the cardioid $r = a(1 + \cos \theta).$ 13. Evaluate $\iint xy \, dx \, dy$ taken over the positive quadrant of the circle $x^2 + y^2 = a^2$. 14. Evaluate $\int_{0}^{\infty} e^{-x^2} \, dx$ using Gamma integrals. 15. Sum the series $\sum_{n=0}^{\infty} \frac{5n+1}{(2n+1)!}.$ 16. Prove that $\log \sqrt{12} = \left(\frac{1}{2} + \frac{1}{3}\right)\frac{1}{4} + \left(\frac{1}{4} + \frac{1}{5}\right)\frac{1}{4^2} + \cdots$ 17. Test the convergence of the series $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{1/2} x^n.$ 18. Show that $\frac{\frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \cdots}{\frac{1}{1!} + \frac{1}{3!} + \frac{1}{5!} + \cdots} = \frac{e-1}{e+1}.$

 $(5 \times 8 = 40)$

<u>PART – C</u>

Answer any TWO questions

- 19. a). Evaluate $\int_0^{\pi/2} \log \sin x \, dx$. b). Find the reduction formula for $I_n = \int (\sin x)^n dx$.
- 20. Change the order of integration and evaluate $\int_0^a \int_{x^2/a}^{2a-x} xy \, dy dx$.

21. Prove that $\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.

22. a). Find the sum of the series $1 + \frac{1+3}{2!} + \frac{1+3+3^2}{3!} + \frac{1+3+3^2+3^3}{4!} + \cdots$

b). Show that
$$\frac{5}{1\cdot 2\cdot 3} + \frac{7}{3\cdot 4\cdot 5} + \frac{9}{5\cdot 6\cdot 7} + \dots = 3\log 2 - 1.$$
 (10+10)

#######

 $(2 \times 20 = 40)$

(10+10)