LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS
SECOND SEMESTER - APRIL 2022

16/17/18UMT2MC02 - ANA. GEO. OF 3D, FOURIER SERIES AND NUMBER THEORY

Date: 18-06-2022
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

PART - A

Answer ALL the questions:
$(10 \times 2=20)$

1. Write the equation of the symmetric form of the straight line.
2. Give the general equation of a straight line.
3. Find the equation of the sphere whose centre is $(1,2,3)$ and radius is 4 .
4. Write the equation of the tangent plane to a sphere.
5. Give the expression for a_{0} in Fourier series.
6. List out Dirichlet's criterion.
7. Determine the number of divisors of 360 .
8. Find the number of integers less than 729 and prime to it.
9. Show that $n^{n}>1.3 .5 \ldots(2 n-1)$.
10. State Cauchy's inequality.

PART - B

Answer any FIVE of the following:
11 . Find the equation of the sphere through the points $(0,-2,3),(1,5,-1),(2,0,1)$ and $(4,-1,2)$.
12. Determine the shortest distance between the lines $\frac{x-3}{-1}=\frac{y-4}{2}=\frac{z+2}{1}$ and $\frac{x-1}{1}=\frac{y+7}{3}=\frac{z+2}{2}$.
13. Find a sine series for $f(x)=c$ in the range $(0, \pi)$.
14. Express $f(x)=\frac{1}{2}(\pi-x)$ as a Fourier series with period 2π, to be valid in the interval $(0,2 \pi)$.
15. Find the highest power of 3 dividing 1000!.
16. Find the remainder obtained in dividing 2^{46} by 47.
17. Show that $\left(x^{m}+y^{m}\right)^{n}<\left(x^{n}+y^{n}\right)^{m}$ if $m>n$.
18. State and prove Weierstrass inequality.

PART - C

Answer any TWO of the following:
19. a) Find the equation of the plane through $(2,-1,1)$ and perpendicular to the line joining the points $(3,4,-1)$ and $(2,-1,5)$.
b) The plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ meets the axes in A, B, C. Find the equation of the circumcircle of the triangle ABC and determine also the coordinates of the centre and radius.
20. Develop a Fourier series expansion for $f(x)=\frac{x^{2}}{4}$ in the interval $[-\pi, \pi]$. Deduce the following. (a) $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{12}$ (b) $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{6}$.
21. a) Show that $13^{2 n+1}+9^{2 n+1}$ is divisible by 22 .
b) Show that 8 th power of any number is of the form 17 m or $17 \mathrm{~m} \pm 1$.
22. a) State and prove Wilson's theorem.
b) State and prove Fermat's theorem.

