LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

U.G. DEGREE EXAMINATION -ALLIED

THIRD SEMESTER - APRIL 2022

Part A

16 /17/18UMT3AL01 – BUSINESS MATHEMATICAL TECHNIQUE

Date: 28-06-2022 Dept. No. Time: 09:00 AM - 12:00 NOON

Answer ALL the questions

1. If $u = \cos x + e^{y}$, then find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$.

- 2. If $y = a \sin x + b \cos x$ find $\frac{d^2 y}{dx^2}$
- 3. State any two properties of definite integrals.
- 4. Evaluate: $\int (4x^2 + 5) dx$
- 5. Define an optimal solution.
- 6. Define feasible solution.
- 7. What are the methods of finding initial basic feasible solution of transportation problem?
- 8. Define assignment problem.
- 9. Define critical path.

Answer any FIVE questions

10. What is an activity?

<u>Part B</u>

(5 X8 = 40)

11. If $y = \sin(m\sin^{-1}x)$, then show that $(1-x^2)y_2 - xy_1 + m^2y = 0$.

- 12. Integrate: $\int \frac{dx}{3x^2 + 2x + 5}$.
- 13. Find the maxima and minima for the following function $2x^3 + 3x^2 36x + 10$.
- 14. Find consumer and producer surplus for $y = 16 x^2$ and $y = 4 + 2x^2$.
- 15. Consider the problem of assigning five jobs five persons. The assignment costs are given as follows

	Persons	Ι	II	III	IV	V
	А	8	4	2	6	1
Jobs	В	0	9	5	5	4
	С	3	3	9	2	6
	D	4	3	1	0	3
	Е	9	5	8	9	5

Determine the optimum assignment schedule.

16. Solve the following LPP by graphical method.

Maximize
$$z = 5x_1 + 8x_2$$

Subject to the constraints: $15x_1 + 10x_2 \le 180$,

$$10x_1 + 20x_2 \le 200 \,,$$

$$15x_1 + 20x_2 \le 210$$

and
$$x_1, x_2 \ge 0$$
.

17. Find the initial basic feasible solution to the following transportation problem by (i) North west – corner rule (ii) Least cost method.

 $(10 \times 2 = 20)$

Max.: 100 Marks

1	2	6	7
0	4	2	12
3	1	5	11
1010	10	10	

18. Draw the network for the follopwing:

Activity	А	В	С	D	Е	F	G	Η	Ι	J	K
Immediate	-	-	-	А	В	В	С	D	D	H,I	F,G
Predecessor											

Part C

 $(2 \times 20 = 40)$

Answer any TWO question

19. a) The total cost function of a firm is given by C = 0.04q³ - 0.9q² + 10q + 10. Find (i) Average cost, (ii) Marginal cost, (iii) Slope of Average cost and (iv) Slope of Marginal cost. b) Find dy/dx, if y = x^x. (10 + 10)

20. Obtain the optimum transportation cost using MODI method with the initial basic feasible solution obtained using least cost method.

Т

	10					
		А	В	С	D	Supply
	Ι	21	16	25	13	11
From	II	17	18	14	23	13
	III	32	27	18	41	19
Demand		6	10	12	15	

21. Solve the following LPP by simplex method.

Minimize $z = 8x_1 - 2x_2$

Subject to the constraints, $-4x_1 + 2x_2 \le 1$,

$$5x_1 - 4x_2 \le 3$$

and
$$x_1, x_2 \ge 0$$
.

22. Find the critical path and the project duration for the following network:

Activity	Least time (days)
1 - 2	8
1 – 3	4
2-4	10
2-5	2
3-4	5
4 – 5	3

############