LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FOURTH SEMESTER - APRIL 2022

16/17/18UMT4ESO1 - COMBINATORICS

Date: 23-06-2022
Time: 09:00 AM - 12:00 NOON

PART - A

Answer ALL the Questions.
($10 \times 2=20$)

1. If $a_{n}=n a_{n-1}$ and $a_{0}=1$. Find a_{3}
2. Expand $(1+x)^{6}$.
3. Construct 2 different 5×5 Latin squares, which have the same first rows and other rows are different.
4. Write down all the possible derangements of 1234 .
5. In how many ways seven men are to be seated around a circular table?
6. Define a generating function.
7. How many possibilities are there for 10 people to be seated in 4 sears?
8. Define a tree.
9. Define the inclusion and exclusion principle.
10. If $A_{1}=\{1,2\}, A_{2}=\{4\}, A_{3}=\{1,3\}$ and $A_{4}=\{2,3,4\}$. Find the distinct representatives for the sets A_{i}.

PART -B

Answer any FIVE of the following Questions.
11. Suppose that $f(n, n-1)=1$ and $(n-k-1) f(n, k)=k(n-1) f(n, k+1)$ for each $k<n-1$. Prove that $f(n, k)=\frac{(n-1)^{n-k-1}(n-2)!}{(k-1)!(n-k-1)!}$.
12. Prove that if a graph has $2 n$ vertices, each of degree $\geq n$, then the graph has a perfect matching.
13. State and prove the Landau's theorem.
14. Find a_{n} if $a_{n}=4 a_{n-1}+4 a_{n-2}-16 a_{n-3}, a_{1}=8, a_{2}=4, a_{3}=24$.
15. Let S be a set of $m n$ objects. Then show that S can be partitioned into n sets of m elements in $\frac{(\mathrm{mn})!}{(\mathrm{m})!{ }^{\mathrm{n}} \mathrm{n}!}$.
16. Explain Ordered Selection and evaluate the following: a) $p(7,4)$, b) $p(9,5)$
17. Explain the Inclusion and Exclusion Principle with an example.
18. a) How many permutations are there of the 26 letters of the alphabet in which the 5 vowels are in consecutive places.
b) How many different necklaces can be designed from n colors, using one bead of each color?

PART - C

Answer any TWO of the following Questions.
$(2 \times 20=40)$
19. a) State and prove marriage theorem.
b) Solve the Fibonacci - type relations.
20. a) Find the optimal assignment for the following problem.

MAN					
		A	B	C	D
	a	6	8	2	7
	b	5	8	13	9
	c	2	7	8	9
	d	4	11	7	10

b) Prove that if a graph has $2 n$ vertices, each of degree $\geq n$, then the graph has a perfect matching.
(10+10)
21.Find the rook polynomial of the board

22. a) State and prove the exchange property.
b) Let n be a positive integer, show that if $(1+x)^{n}$ is expanded as a sum of powers of n, the coefficient of x^{r} is $\binom{\mathrm{n}}{\mathrm{r}}$.
(10+10)

