LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FOURTH SEMESTER - APRIL 2022
16/17/18UMT4MC01 - ABSTRACT ALGEBRA

Date: 16-06-2022
Time: 09:00 AM - 12:00 NOON

PART - A

Answer ALL Questions:

1. Show that if every element of a group G is its own inverse, then G is abelian.
2. For all $a, b \in G$, show that $(a . b)^{-1}=b^{-1} a^{-1}$.
3. Define quotient group.
4. Show that the intersection of two normal subgroups of G is also a normal subgroup of G .
5. Let $G=\{1,-1, i,-i\}$ be the group under multiplication and I be group of all integers under addition.

Prove that the mapping $f: I \rightarrow G$ such that $f(x)=i^{n} \forall n \in I$, is a homomorphism.
6. Write the cycles of $\left(\begin{array}{lllll}1 & 2 & 3 & 45678 \\ 3 & 5 & 2 & 478 & 1\end{array}\right)$.
7. Show that kernel of a ring homomorphism is an ideal.
8. When is an integral domain said to be of characteristic zero?
9. Define Euclidean ring.
10. Find all units of J[i].

PART - B

Answer any FIVE Questions:

11. If G is group of even order, prove that it has an element $a \neq e$ satisfying $a^{2}=e$.
12. State and prove the necessary and sufficient condition for a nonempty subset of a group to be a subgroup of the group.
13. Show that the subgroup N of a group G is a normal subgroup of G if and only if every left coset of N in G is a right coset of N in G.
14. If H and K are subgroups of a group G, prove that $H K$ is a subgroup of G if and only if $H K=K H$.
15. State and prove Cayley's theorem.
16. If ϕ is a homomorphism of a group G into another group G with kernel K, prove that K is a normal subgroup of G.
17. If U is an ideal of a ring R show that R / U is also a ring.
18. Let R be a Euclidean ring. Show that any two elements a and b in R have a greatest common divisor d which can be expressed as $\lambda \mathrm{a}+\mu \mathrm{b}$ for some λ, μ in R.

PART - C

Answer any TWO Questions:

19. (a) If G is a group, show that for all $a \in G, H_{a}=\{x \in G, a \equiv x \bmod H\}$.
(b) Show that any group of prime order is cyclic.
(C) If G is a group, show that the set of all automorphisms $\mathcal{A}(G)$ of G is also a group.
20. (a) If H and K are finite subgroups of G , then show that $o(H K)=\frac{o(H) o(K)}{o(H \cap K)}$.
(b) If ϕ is a homomorphism of a group G onto a group \bar{G} with kernel K, then prove that $G / K \equiv \bar{G}$.
21. (a) Show that the alternating group A_{n} is a normal subgroup of the symmetric group S_{n} of index two.
(b) Prove that a finite integral domain is a field.
22. (a) If U is an ideal of a ring R show that R / U is also a ring.
(b) Show that $\mathrm{J}[\mathrm{i}]$ is a Euclidean ring.
(c) State and prove unique factorization theorem.

@@@@@@@

