LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FOURTH SEMESTER – APRIL 2022

16/17/18UMT4MC01 – ABSTRACT ALGEBRA

Date: 16-06-2022 Dept. No. Time: 09:00 AM - 12:00 NOON

PART – A

Answer ALL Questions:

- 1. Show that if every element of a group G is its own inverse, then G is abelian.
- 2. For all $a, b \in G$, show that $(a \cdot b)^{-1} = b^{-1}a^{-1}$.
- 3. Define quotient group.
- 4. Show that the intersection of two normal subgroups of G is also a normal subgroup of G.
- 5. Let G = {1, -1, i, -i} be the group under multiplication and I be group of all integers under addition.
 Prove that the mapping f: I → G such that f(x) = iⁿ ∀n ∈ I, is a homomorphism.
- 6. Write the cycles of $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 5 & 2 & 4 & 7 & 8 & 1 & 6 \end{pmatrix}$.
- 7. Show that kernel of a ring homomorphism is an ideal.
- 8. When is an integral domain said to be of characteristic zero?
- 9. Define Euclidean ring.
- 10. Find all units of J[i].

PART – B

Answer any FIVE Questions:

- 11. If G is group of even order, prove that it has an element $a \neq e$ satisfying $a^2 = e$.
- 12. State and prove the necessary and sufficient condition for a nonempty subset of a group to be a subgroup of the group.
- 13. Show that the subgroup N of a group G is a normal subgroup of G if and only if every left coset of N in G is a right coset of N in G.
- 14. If *H* and *K* are subgroups of a group *G*, prove that *HK* is a subgroup of *G* if and only if *HK*=*KH*.
- 15. State and prove Cayley's theorem.

 $(5 \times 8 = 40)$

 $(10 \times 2 = 20)$

Max.: 100 Marks

- 16. If ϕ is a homomorphism of a group G into another group G with kernel K, prove that K is a normal subgroup of G.
- 17. If U is an ideal of a ring R show that R/U is also a ring.

Answer any TWO Questions:

18. Let *R* be a Euclidean ring. Show that any two elements *a* and *b* in *R* have a greatest common divisor *d* which can be expressed as $\lambda a + \mu b$ for some λ , μ in *R*.

PART – C

(2	×	20	=	40)
----	---	----	---	-----

19. (a) If G is a group, show that for all $a \in G$, $H_a = \{x \in G, a \equiv x \mod H\}$.				
(b) Show that any group of prime order is cyclic.	(7)			
(C) If G is a group, show that the set of all automorphisms $\mathcal{A}(G)$ of G is also a group.	(5)			
20. (a) If H and K are finite subgroups of G, then show that $o(HK) = \frac{o(H)o(K)}{o(H \cap K)}$.	(11)			
(b) If ϕ is a homomorphism of a group G onto a group \overline{G} with kernel K, then prove that				
$G/K \equiv \bar{G}.$	(9)			
21. (a) Show that the alternating group A_n is a normal subgroup of the symmetric group S_n of index two.				
	(6)			
(b) Prove that a finite integral domain is a field.	(14)			
22. (a) If U is an ideal of a ring R show that R/U is also a ring.				
(b) Show that J[i] is a Euclidean ring.	(10)			

(c) State and prove unique factorization theorem. (7)

aaaaaaa