LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

SIXTH SEMESTER - APRIL 2022

16/17/18UMT6MCO3 - DISCRETE MATHEMATICS

Date: 20-06-2022
Dept. No. \square

PART - A

Answer ALL questions

(10x2=20)

1. What is a declarative sentence?
2. Define monoid with an example.
3. Prove that in a lattice if $a \leq b$ then $a \oplus b=b$.
4. How do you justify the consistency of given any two premises?
5. Write the following statement in symbolic form, 'Moscow is neither a country nor a state'.
6. Define semigroup homomorphism.
7. When do you say an element to be join-irreducible?
8. State the rules of inference.
9. Discuss the conditions for a Boolean expression to be symmetric.

10 . What is a complemented lattice?

PART - B

Answer any FIVE questions

11. What is an idempotent element? Prove that for any commutative monoid $(M, *)$, the set of idempotent elements of M forms a submonoid.
12. Construct the truth table of $(i)(Q \wedge(P \rightarrow Q)) \rightarrow P \quad$ (ii) $\urcorner(P \wedge Q) \rightleftarrows(\neg P \vee Q)$.
13. (a) Show that $P(x) \wedge(x) Q(x) \Rightarrow(\exists x)(P(x) \wedge Q(x))$.
(b) Prove that the conclusion $R \vee S$ follows from the premises $(C \vee D) \rightarrow 7 H$, $7 \mathrm{H} \rightarrow(\mathrm{A} \wedge 7 \mathrm{~B})$ and $(\mathrm{A} \wedge 7 \mathrm{~B}) \rightarrow(\mathrm{R} \vee \mathrm{S})$ using equivalence laws.
14. Show that in a complemented distributive lattice $a \leq b \Leftrightarrow a * b^{\prime}=0 \Leftrightarrow a^{\prime} \oplus b=1 \Leftrightarrow b^{\prime} \leq a^{\prime}$.
15. Prove that the quotient set $(S / R, \oplus)$ is a semigroup, where R is congruence relation defined on a semigroup ($\mathrm{S},{ }^{*}$). Also verify whether there exists a natural homomorphism from ($\mathrm{S},{ }^{*}$) onto $(S / R, \oplus$).
16. Express the following sentences in symbolic form using the corresponding quantifiers. (i) All men are giants. (ii) Integers are either positive or negative. (iii) X is the father of mother of Y . (iv) Some cats are black.
17. State and prove Stone's Representation theorem.
18. Define least upper bound and greatest lower bound and prove that every finite lattice is bounded.

PART - C

Answer any TWO questions
$(2 \times 20=40)$
19. (a) Express the following Boolean expressions in an equivalent sum of the product of canonical forms in three variables x_{1}, x_{2} and $x_{3}(i) x_{1} * x_{2}$. (ii) $x_{1} \oplus x_{2}$. (iii) $\left(x_{1} \oplus x_{2}\right)^{\prime} * x_{3}$.
(b) Obtain the principal disjunctive and conjunctive normal forms of
$(\mathrm{Q} \rightarrow \mathrm{P}) \wedge(7 \mathrm{P} \wedge \mathrm{Q})$.
20. (a) State and prove De Morgan's laws of Lattices.
(b) Show that the composition of semigroup homomorphism is also a semigroup homomorphism.

$$
(10+10)
$$

21. (a) Let X be a set containing n elements, let X^{*} denote the free semigroup generated by X, and let (S, \oplus) be any other semigroup generated by any n generators then show that there exists a homomorphism $g: X^{*} \rightarrow S$.
(b) Show that the formula $Q \vee(P \wedge 1 Q) \vee(1 P \wedge 1 Q)$ is a tautology with reasons.

$$
(10+10)
$$

22. (a) Prove that $\left(S_{36}, D\right)$ the set of all divisors of 36 and D denote the relation of division is a lattice.

Also evaluate the diagrams for $S_{n} ; n=12,8$.
(b) Verify using rules of inference whether $S \vee R$ is tautologically implied by
$(P \vee Q) \wedge(P \rightarrow R) \wedge(Q \rightarrow S)$.
$(10+10)$

