LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
 M.Sc., DEGREE EXAMINATION - MATHEMATICS
 SECOND SEMESTER - APRIL 2022
 PMT 2501 - ALGEBRA

LUCEAT LUX VESTRA
\square Max. : 100 Marks
Date: 15-06-2022
Dept. No.
Time : 09:00 A.M. - 12:00 NOON
Answer ALL the Questions.

1. a) If $\mathrm{O}(\mathrm{G})=\mathrm{p}^{2}$ where p is a prime number, then show that G is abelian.
(OR)
b) Prove that a group of order 72 is not simple.
c) If p is a prime number such that p^{α} divides order of G then prove that G has a subgroup of order p^{α}.
(OR)
d) State and prove Cauchy's theorem and prove that the number of p-sylow subgroups in G is of the form $1+\mathrm{kp}$.
2. a) For the given two polynomials $f(x), g(x) \neq 0$ in $F[x]$ prove that there exists two polynomials $\mathrm{t}(x), \mathrm{r}(x)$ in $\mathrm{F}[\mathrm{x}]$ such that $f(x)=t(x) g(x)+r(x)$ where $r(x)=0$ (or) $\operatorname{deg} r(x)<\operatorname{deg} g(x)$.
(OR)
b) If $f(x)$ and $g(x)$ are primitive polynomials prove that $f(x) g(x)$ is also a primitive polynomial.
c) (i) If the primitive polynomial $f(x)$ can be factored as the product of two polynomials having rational coefficients prove that it can be factored as the product of two polynomials having integer coefficients.
(ii) If $f(x)$ and $g(x)$ are two nonzero polynomials prove that $\operatorname{deg}(f(x) g(x))=\operatorname{deg} f(x)+\operatorname{deg} g(x)$.
(OR)
d) (i) State and prove Eisenstein Criterion.
(ii) State and prove Gauss Lemma.
3. a) Prove that the elements in K which are algebraic over F form a subfield of K.
(OR)
b) Let F be a field of rational numbers and let $f(x)=x^{3}-2$. Find the degree of the splitting field E over F.
c) Prove that the element $a \in K$ is said to be algebraic over F iff $\mathrm{F}(a)$ is a finite extension over F .
(OR)
d) (i) If L is the finite extension of K and K is the finite extension of F prove that L is the finite extension of F.
(ii) If L is the finite extension of F and K is the subfield of L which contains F prove that $[\mathrm{K}: \mathrm{F}]$ divides [L:F].
4. a) Prove that a polynomial of degree n over the field F can have atmost ' n ' roots in any extension field.
(OR)
b) Prove that K is a normal extension of F iff K is a splitting field of some polynomial over F .
c) State and prove fundamental theorem of Galois Theory.
(OR)
d) Let K be a normal extension of F and let H be a subgroup of $\mathrm{G}(\mathrm{K}, \mathrm{F}), K_{H}=\{x \in K / \sigma(x)=x \forall \sigma \in H\}$ is a fixed field of H prove that $i)\left[K: K_{H}\right]=O(H)$, ii) $H=G\left(K, K_{H}\right)$, in particular, $H=G(K, F)$, $[K: F]=O(G(K, F))$.
5. a) Let G be a finite abelian group such that $x^{\mathrm{n}}=(\mathrm{e})$ is satisfied by atmost n elements of G for every n prove that G is a cyclic group.
(OR)
b) Prove that for every prime number p and every integer m, there exists a field having p^{m} elements.
c) Prove that any finite division ring is necessarily a commutative field.
(OR)
d) Prove that S_{n} is not solvable for $\mathrm{n} \geq 5$ and verify S_{3} is solvable.
