LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034		
M.Sc. DEGREE EXAMINATION – MATHEMATICS		
SECOND SEMESTER – APRIL 2022		
PMT 2502 – MEASURE THEORY AND INTEGRATION		
Date: 20-06-2022 Dept. No. Time: 09:00 AM - 12:00 NOON	Max. : 100 Marks	
Answer ALL Questions:		
1. a) For $k > 0$ and $A \subseteq R$, $kA = \{x: k^{-1}x \in A\}$, show that $m^*(kA) = km^*(A)$. OR	(5 Marks)	
b) Let c be any real number and f, g be real-valued measurable functions defined of set E. Then prove that functions $f + c$, cf are measurable.	on the same measurable (5 Marks)	
c) If $m^*(E) < \infty$, then prove that <i>E</i> is measurable if and only if for all $\epsilon > 0$, the	ere exists disjoint finite	
intervals $I_1, I_2 \dots I_n$ such that $m^*(E\Delta \bigcup_{i=1}^n I_i) < \epsilon$.	(15 Marks)	
OR		
d) Construct a non-measurable set.	(15 Marks)	
2. a) If f is an integrable function, then prove that af is integrable and $\int af dx = a \int dx$		
OR	(5 Marks)	
b) State and prove Lebesgue Monotone Convergence theorem.	(5 Marks)	
c) State and prove Lebesgue Dominated convergence theorem. Use it to evaluate the integral		
$\lim_{n \to \infty} \int_0^1 \frac{n^{3/2} x}{1 + n^2 x^2} dx, x \in [0, 1], n \ge 1.$ Marks)	(15	
OR		
d) Prove that Riemann integrability implies Lebesgue integrability. Is the convers	e true? Justify. (15 Marks)	
3. a) If μ^* is the outer measure on $\mathcal{H}(\mathcal{R})$ defined by μ on \mathcal{R} , then establish that the	class of μ^* -measurable	
sets S^* contains the $\sigma - ring S(\mathcal{R})$ generated by \mathcal{R} .	(5 Marks)	
OR b) If $\mu^*(X) < \infty$. Prove that $E \subseteq X$ is μ^* -measurable if and only if $\mu^*(X) = \mu^*(E)$	$() + \mu^*(E^c).$ (5 Marks)	
c) Let μ^* be the outer measure on $\mathcal{H}(\mathcal{R})$ and \mathcal{S}^* denotes the class of μ^* -measurable σ -ring and μ^* restricted to \mathcal{S}^* is a complete measure. OR	e sets. Prove that <i>S</i> * is (15 Marks)	
d) Prove that \overline{S} is a $\sigma - ring$ where μ is a measure defined on a $\sigma - ring$ $E \in S$ and N is contained in some set in S with zero measure}. Also, prove $\overline{\mu}$ defined by $\overline{\mu}(E \Delta N) = \mu(E)$ is a complete measure on \overline{S} . (15 Mark	that the set function	
4. a) If ψ be a convex function defined on (a, b) with $a < s < t < u < b$, then $\psi(s, t) < u$ Justify this statement. OR	$\leq \psi(s, u) \leq \psi(t, u).$ (5 Marks)	

	b) When do you say that a sequence of measurable functions converges to a measurable function almost uniformly. If a sequence of measurable functions converges almost uniformly, then will it imply that		
	the sequence converges in measure.	(5 Marks)	
	c) (i) State and prove Holder's inequality. When does the equality occur?	(9 Marks)	
	(ii) If $p \ge 1$ and $f, g \in L^p(\mu)$, then demonstrate $ f + g _p \le f _p + g _p$. OR	(6 Marks)	
	 d) (i) State and prove Completeness theorem for convergence in measure. (ii) Let {f_n} be a sequence of non negative measurable functions and let f be a measure. 	(9 Marks) surable function	
	such that $f_n \xrightarrow{m} f$, then prove that $\int f d\mu \leq \liminf \int f_n d\mu$.	(6 Marks)	
5.	a) Show that if ν is a signed measure, $ \nu(E) < \infty$ and $F \subseteq E$, then $ \nu(F) < \infty$. OR	(5 Marks)	
	b) Let μ, λ , ν be σ -finite signed measures on $[X, S]$ such that $\nu \ll \mu$, $\mu \ll \lambda$, then show that		
	$\frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu} \cdot \frac{d\mu}{d\lambda} [\lambda].$	(5 Marks)	
	c) (i) For a signed measure ν defined on a measurable space $[X, S]$, prove that there exists a positive		
	A and a negative set B such that $A \cup B = X$ and $A \cap B = \emptyset$.	(6 Marks)	
	(ii) State and prove Lebesgue decomposition theorem.	(9 Marks)	
	OR		

d) State and prove Radon-Nikodym theorem.

(15 Marks)

aaaaaaa