# LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034 

M.Sc. DEGREE EXAMINATION - MATHEMATICS

SECOND SEMESTER - APRIL 2022
PMT 2502 - MEASURE THEORY AND INTEGRATION

Date: 20-06-2022
Time: 09:00 AM - 12:00 NOON

## Answer ALL Questions:

1. a) For $k>0$ and $A \subseteq R, k A=\left\{x: k^{-1} x \in A\right\}$, show that $m^{*}(k A)=k m^{*}(A)$.
(5 Marks)
OR
b) Let $c$ be any real number and $f, g$ be real-valued measurable functions defined on the same measurable set $E$. Then prove that functions $f+c, c f$ are measurable.
(5 Marks)
c) If $m^{*}(E)<\infty$, then prove that $E$ is measurable if and only if for all $\epsilon>0$, there exists disjoint finite intervals $I_{1}, I_{2} \ldots I_{n}$ such that $m^{*}\left(E \Delta \bigcup_{i=1}^{n} I_{i}\right)<\epsilon$.
(15 Marks)
OR
d) Construct a non-measurable set.
(15 Marks)
2. a) If $f$ is an integrable function, then prove that $a f$ is integrable and $\int a f d x=a \int f d x$.
(5 Marks)

## OR

b) State and prove Lebesgue Monotone Convergence theorem.
(5 Marks)
c) State and prove Lebesgue Dominated convergence theorem. Use it to evaluate the integral $\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{n^{3 / 2} x}{1+n^{2} x^{2}} d x, x \in[0,1], n \geq 1$.

## Marks)

## OR

d) Prove that Riemann integrability implies Lebesgue integrability. Is the converse true? Justify.
(15 Marks)
3. a) If $\mu^{*}$ is the outer measure on $\mathcal{H}(\mathcal{R})$ defined by $\mu$ on $\mathcal{R}$, then establish that the class of $\mu^{*}$-measurable sets $S^{*}$ contains the $\sigma-\operatorname{ring} S(\mathcal{R})$ generated by $\mathcal{R}$.
(5 Marks)

## OR

b) If $\mu^{*}(X)<\infty$. Prove that $E \subseteq X$ is $\mu^{*}$-measurable if and only if $\mu^{*}(X)=\mu^{*}(E)+\mu^{*}\left(E^{c}\right)$.
(5 Marks)
c) Let $\mu^{*}$ be the outer measure on $\mathcal{H}(\mathcal{R})$ and $\mathcal{S}^{*}$ denotes the class of $\mu^{*}$-measurable sets. Prove that $\mathcal{S}^{*}$ is $\sigma$-ring and $\mu^{*}$ restricted to $\mathcal{S}^{*}$ is a complete measure.
(15 Marks)

## OR

d) Prove that $\overline{\mathcal{S}}$ is a $\sigma-\operatorname{ring}$ where $\mu$ is a measure defined on a $\sigma-\operatorname{ring} \mathcal{S}$ and $\overline{\mathcal{S}}=\{E \Delta N$ : $E \in \mathcal{S}$ and $N$ is contained in some set in $\mathcal{S}$ with zero measure\}. Also, prove that the set function $\bar{\mu}$ defined by $\bar{\mu}(E \Delta N)=\mu(E)$ is a complete measure on $\bar{\delta}$.
(15 Marks)
4. a) If $\psi$ be a convex function defined on $(a, b)$ with $a<s<t<u<b$, then $\psi(s, t) \leq \psi(s, u) \leq \psi(t, u)$. Justify this statement.
(5 Marks)
b) When do you say that a sequence of measurable functions converges to a measurable function almost uniformly. If a sequence of measurable functions converges almost uniformly, then will it imply that the sequence converges in measure.
(5 Marks)
c) (i) State and prove Holder's inequality. When does the equality occur?
(ii) If $p \geq 1$ and $f, g \in L^{p}(\mu)$, then demonstrate $\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}$.

OR
d) (i) State and prove Completeness theorem for convergence in measure.
(9 Marks)
(ii) Let $\left\{f_{n}\right\}$ be a sequence of non negative measurable functions and let $f$ be a measurable function such that $f_{n} \xrightarrow{m} f$, then prove that $\int f d \mu \leq \lim \inf \int f_{n} d \mu$.
5. a) Show that if $v$ is a signed measure, $|v(E)|<\infty$ and $F \subseteq E$, then $|v(F)|<\infty$.

## OR

b) Let $\mu, \lambda, v$ be $\sigma$-finite signed measures on $\llbracket X, S \rrbracket$ such that $v \ll \mu, \mu \ll \lambda$, then show that $\frac{d \nu}{d \lambda}=\frac{d \nu}{d \mu} \cdot \frac{d \mu}{d \lambda}[\lambda]$.
(5 Marks)
c) (i) For a signed measure $v$ defined on a measurable space $\llbracket X, S \rrbracket$, prove that there exists a positive set $A$ and a negative set $B$ such that $A \cup B=X$ and $A \cap B=\emptyset$.
(ii) State and prove Lebesgue decomposition theorem.

## OR

d) State and prove Radon-Nikodym theorem.

