LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

SECOND SEMESTER - APRIL 2022
PMT 2503 - PARTIAL DIFFERENTIAL EQUATIONS

Date: 17-06-2022
Dept. No. \square Max. : 100 Marks
Time: 09:00 AM - 12:00 NOON

ANSWER ALL QUESTIONS

1. (a) Find the partial differential equation of the family of planes whose sum of x, y, z intercepts is equal to unity.
(OR)
(b) Solve: $\left|\begin{array}{ccc}x & y & z \\ \alpha & \beta & \gamma \\ \frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} & -1\end{array}\right|=0$
(c) When do you say that two first order partial differential equations are compatible? Check whether the following partial differential equations $x p-y q=x$ and $x^{2} p+q=x z$ are compatible and if so, find their solution.

(OR)

(d) (i) Eliminate the arbitrary function from $F\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0$.
(ii) Find the characteristics of the equation $p q=z$ and hence determine the integral surface which passes through the parabola $x=0, y^{2}=z$.
2. (a) Find the adjoint operators for $L(u)=u_{x x}+u_{y y}$ and $L(u)=u_{x x}-u_{t}$.
(OR)
(b) Determine the suitable characteristics for $y^{2} u_{x x}-2 x y u_{x y}+x^{2} u_{y y}=\frac{y^{2}}{x} u_{x}+\frac{x^{2}}{y} u_{y}$.
(c) Reduce $u_{x x}-2 \sin x u_{x y}-\cos ^{2} x u_{y y}-\cos x u_{y}=0$ to a canonical form and hence solve it. (15)
(OR)
(d) Explain the Riemann's method for solving the hyperbolic partial differential equation.
3. (a) Find the solution of Laplace's equation in cylindrical coordinates.

(OR)

(b) Examine whether the following provides a non-trivial solution to $\nabla^{2} u=0$ under the boundary conditions $u(x, b)=u(a, y)=u(0, y)=0$.
(1) $u(x, y)=\left(c_{1} e^{p x}+c_{2} e^{-p x}\right)\left(c_{3} \cos p y+c_{4} \sin p y\right)$

$$
\begin{equation*}
\text { (2) } u(x, y)=\left(c_{1} x+c_{2}\right)\left(c_{3} y+c_{4}\right) \tag{5}
\end{equation*}
$$

(c) Solve $\nabla^{2} u=0,0 \leq r \leq a, 0 \leq \theta \leq 2 \pi$, under the boundary conditions $u(a, \theta)=f(\theta)$. (OR)
(d) Solve the Neumann's problem for a rectangle.
4. (a) Find the periodic solution of one-dimensional wave equation in cylindrical coordinates.

(OR)

(b) Prove that $u(x, t)=\frac{1}{2}[\eta(x+c t)+\eta(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} v(\xi) d \xi$ is the solution of the equation $u_{t t}=c^{2} u_{x x},-\infty<x<\infty, t \geq 0$, with initial conditions $u(x, 0)=\eta(x), u_{t}(x, 0)=v(x)$.
(c) Solve the following wave equation: $u_{t t}=c^{2} u_{x x}, 0 \leq x \leq L, t>0$,
$u(0, t)=u(L, t)=0, u(x, 0)=f(x), u_{t}(x, 0)=g(x)$.
(OR)
(d) Solve the one-dimensional diffusion equation in the region $0 \leq x \leq \pi, t \geq 0$, subject to the conditions (i) T remains finite as $t \rightarrow \infty$, (ii) $T=0$, if $x=0$ and π for all t, (iii) At $t=0$,
$T=\left\{\begin{array}{cl}x & : 0 \leq x \leq \pi / 2 \\ \pi-x & : \pi / 2 \leq x \leq \pi\end{array}\right.$
5. (a) Prove that the Green's function has the symmetric property.
(OR)
(b) Use Green's function technique to solve the Dirichlet's problem for a semi-infinite space.
(c) Using the Laplace transform method, solve $u_{x x}=\frac{1}{c^{2}} u_{t t}-\cos \omega t, 0 \leq x<\infty, 0 \leq t<\infty$, subject to $u(0, t)=0, u$ is bounded as $x \rightarrow \infty, u_{t}(x, 0)=u(x, 0)=0$.
(OR)
(d) State and prove Helmholtz theorem.

