LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

SECOND SEMESTER - APRIL 2022

PMT 2601 - FORMAL LANGUAGES AND AUTOMATA THEORY

Date: 24-06-2022
Dept. No. \square Max. : 100 Marks
Time: 09:00 AM - 12:00 NOON

Answer ALL questions

1. (a) Design FA which accepts odd number of ones and any number of zeros.
(b) Write any five applications of Automata theory.
(c) (i) Design finite automata which checks whether the given decimal number is divisible by 3 .
(ii) Design an NFA to accept set of strings over $\{0,1\}$ such that it ends with two consecutive zeros.
(OR)
(d) Convert the following NFA with ϵ to equivalent DFA.

2. (a) Define regular expression. Also, write the regular expression for the language accepting the strings which are starting with 1 and ending with 0 over $\sum=\{0,1\}$.
(5)
(OR)
(b) Using the identities of regular of expressions, prove that
(i) $\left(0^{*} 1^{*}\right)^{*}=(0+1)^{*}($ ii $)(r+s)^{*} \neq r^{*}+s^{*}$
(c) Construct NFA with ε moves which accept the language defined by the regular expression $r=\left((0+1)^{*} 10+(00)^{*}(11)\right)^{*}$.
(OR)
(d) Construct the regular expression from the given DFA using Arden's method.

3. (a) Without changing the meaning of the grammar, eliminate ε-productions and unit productions for the following CFG: $S \rightarrow a S a, A \rightarrow B, S \rightarrow b S b, S \rightarrow \varepsilon$.
(OR)
(b) Define Ambiguity and check whether the given grammar is ambiguous or not?

$$
\begin{equation*}
S \rightarrow i C t S, S \rightarrow i C t S e S, S \rightarrow a, C \rightarrow b \tag{5}
\end{equation*}
$$

(c) Explain leftmost derivation, rightmost derivation and phase trees with suitable examples
(OR)
(d) Reduce the following CFG to the Chomsky normal form.

$$
\begin{gather*}
S \rightarrow 1 A / 0 B \\
A \rightarrow 1 A A / 0 S / 0 \\
B \rightarrow 0 B B / 1 S / 1 . \tag{15}
\end{gather*}
$$

4. (a) Construct PDA which accepts only odd number of a's over $\sum=\{a, b\}$.
(OR)
(b) Write short notes on (i) Input tape (ii) finite control and (iii) stack in pushdown automata. (5)
(c) Construct push down automata for the language of any combinations of 0 ' s and 1 's using

Chomsky normal form.
(OR)
(d) Design deterministic pushdown automata which accepts the language $L=\left\{0^{n} 1^{3 n} / n \geq 0\right\}$. Further, trace your PDA for the input with $n=3$.
5. (a) Write short note on the history and application of Turing Machine.

(OR)

(b) Construct Turing Machine for the successor function for a given unary number.
(c) Design Turing Machine for checking well-formedness of the parenthesis. In addition, construct the transition table and trace your TM with different inputs.

(OR)

(d) Construct a Turing Machine for the linear function $f(x)=x+5, x \in N$. Also, simulate the machine for any two input values of x.

