LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FOURTH SEMESTER - APRIL 2022

PMT 4502 - NUMERICAL METHODS USING C++

Date: 17-06-2022
Dept. No. \square Max. : 100 Marks
Time: 01:00 PM - 04:00 PM

Answer ALL Questions

$5 \times 20=100$

1. (a) Using Bisection method find the root of the equation $3 x+\sin x-e^{x}=0$.

OR
(b) Solve $e^{x}-3 x=0$ by the method of iteration.
(c) Find the root of the equation $x^{4}-x-10=0$, correct up to five decimal places by Newton's Raphson method.

OR
(d) Find the real root of the equation $x^{3}-9 x+1=0$, correct to five decimal places by Regula falsi method.
2. (a) Solve the system of equation by Gauss elimination method $2 x+4 y+2 z=15$, $2 x+y+2 z=-5,4 x+y-2 z=0$.

OR
(b) Solve the following equations by Jacobi method $83 x+11 y-4 z=95$,
$7 x+52 y+13 z=104,3 x+8 y+29 z=71$.
(c) Solve the equation by triangularization method $2 x+3 y+z=9, x+2 y+3 z=6,3 x+y+$ $2 z=8$.

OR
(d) Apply Gauss Seidel method to solve the following equation
$5 x+2 y+z=12$
$x+4 y+2 z=15$
$x+2 y+5 z=20$
3. (a) Derive Gregory-Newtons backward interpolation formula.

> OR
(b) The following data gives I, the indicated HP and V, the speed in knots developed by a ship

V	8	10	12	14	16
I	1000	1900	3250	5400	8950

Find I, when $V=9$, using Newton's forward interpolation formula.
(c) Use Lagrange's interpolation formula to find the value of y when $\mathrm{x}=0, \mathrm{x}=2, \mathrm{x}=5, \mathrm{x}=6$.

x	-2	1	3	7
y	5	7	11	34

OR
(d) Using Stirling's formula find $e^{0.644}$ correct to four decimal places from the following table

x	0.61	0.62	0.63	0.64	0.65	0.66	0.67
e^{x}	1.840431	1.858928	1.877610	1.896481	1.915541	1.934792	1.954237

4. (a) Derive the derivatives using Stirling's formula.

OR
(b) Find the maximum value of y from the following table

x	-1	1	2	3
y	-21	15	12	3

(c) Using Bessel's formula, find the derivative of $f(x)$ at $x=3.5$ from the following table

x	3.47	3.48	3.49	$3 . .50$	3.51	3.52	3.53
$\mathrm{~F}(\mathrm{x})$	0.193	0.195	0.198	0.201	0.203	0.206	0.208
OR							

(d). Evaluate $\int_{0}^{10} \frac{d x}{1+x^{2}}$ using (i) Trapezoidal rule (ii) Simpson's $\frac{1}{3}$ rule and (iii) Simpson's $\frac{3}{8}$ rule.
5. (a) Solve the system of differential equations $\frac{d y}{d x}=x z+1, \frac{d y}{d x}=-x y$ for $\mathrm{x}=0.3$ using fourth order Runge-kutta method with the values $\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=1$.

OR

(b) Use Picard's method to approximate the value of y when $x=0.1$ given that $y=1$, when $x=0$ and
$\frac{d y}{d x}=3 x+y^{2}$.
(c) Derive the formula of Taylor's series and using that method find y at $\mathrm{x}=1.1$ and 1.2 by solving $\frac{d y}{d x}=x^{2}+y^{2}$, given $y(1)=2.3$.

OR

(d) Consider the second order initial value problem $y^{\prime \prime}-2 y^{\prime}+2 y=e^{2 t} \operatorname{sint}$ with $y(0)=-0.4$ and $y^{\prime}(0)=-0.6$. Using fourth order Runge-Kutte method, find $y(0.2)$.

@@@@@@@

