LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FOURTH SEMESTER – **APRIL 2022**

PMT 4502 – NUMERICAL METHODS USING C++

Dept. No. Date: 17-06-2022 Max.: 100 Marks Time: 01:00 PM - 04:00 PM **Answer ALL Questions** 5 x 20=100 1. (a) Using Bisection method find the root of the equation $3x + sinx - e^x = 0$. OR (b) Solve $e^x - 3x = 0$ by the method of iteration. (5) (c) Find the root of the equation $x^4 - x - 10 = 0$, correct up to five decimal places by Newton's Raphson method. OR (d) Find the real root of the equation $x^3 - 9x + 1 = 0$, correct to five decimal places by Regula falsi method. (15)2. (a) Solve the system of equation by Gauss elimination method 2x + 4y + 2z = 15, 2x + y + 2z = -5, 4x + y - 2z = 0.OR (b) Solve the following equations by Jacobi method 83x + 11y - 4z = 95, 7x + 52v + 13z = 104, 3x + 8v + 29z = 71. (5)(c) Solve the equation by triangularization method 2x + 3y + z = 9, x + 2y + 3z = 6, 3x + y + 3z = 62z = 8. OR

(d) Apply Gauss Seidel method to solve the following equation 5x + 2y + z = 12x + 4y + 2z = 15x + 2y + 5z = 20

3. (a) Derive Gregory-Newtons backward interpolation formula.

OR

(b) The following data gives I, the indicated HP and V, the speed in knots developed by a ship

V	8	10	12	14	16
Ι	1000	1900	3250	5400	8950

Find *I*, when *V*=9, using Newton's forward interpolation formula.

(5)

(15)

(c) Use Lagrange's interpolation formula to find the value of y when x=0, x=2, x=5, x=6.

X	-2	1	3	7		
У	5	7	11	34		
OR						

(1) Using	Stirling's	formula fin	d $e^{0.644}$	correct to	four d	ecimal	places	from th	ne follov	ving table
<u>-</u>	.,										

Х	0.61	0.62	0.63	0.64	0.65	0.66	0.67
e ^x	1.840431	1.858928	1.877610	1.896481	1.915541	1.934792	1.954237
							(15)

4. (a) Derive the derivatives using Stirling's formula.

OR

(b) Find the maximum value of y from the following table

X	-1	1	2	3
У	-21	15	12	3
				(5)

(c) Using Bessel's formula, find the derivative of f(x) at x = 3.5 from the following table

Х	3.47	3.48	3.49	350	3.51	3.52	3.53
F(x)	0.193	0.195	0.198	0.201	0.203	0.206	0.208
	•	•	OR	•	•		

(d) . Evaluate $\int_0^{10} \frac{dx}{1+x^2}$ using (i) Trapezoidal rule (ii) Simpson's $\frac{1}{3}$ rule and (iii) Simpson's $\frac{3}{8}$ rule. (15)

5. (a) Solve the system of differential equations $\frac{dy}{dx} = xz + 1$, $\frac{dy}{dx} = -xy$ for x=0.3 using fourth order Runge-kutta method with the values x= 0, y= 0, z= 1.

OR

(b) Use Picard's method to approximate the value of y when x = 0.1 given that y = 1, when x = 0 and $\frac{dy}{dx} = 3x + y^2.$ (5)

(c) Derive the formula of Taylor's series and using that method find y at x=1.1 and 1.2 by solving $\frac{dy}{dx} = x^2 + y^2$, given y(1) = 2.3.

OR

(d) Consider the second order initial value problem $y'' - 2y' + 2y = e^{2t}sint$ with

y(0) = -0.4 and y'(0) = -0.6. Using fourth order Runge-Kutte method, find y(0.2).

(15)

aaaaaaaa