LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 M.Sc. DEGREE EXAMINATION – MATHEMATICS FOURTH SEMESTER – APRIL 2022 PMT 4504 – CALCULUS OF VARIATIONS AND INTEGRAL EQUATIONS		
Date: 20-06-2022 Dept. No. Max. : 100 Marks Time: 01:00-04:00		
Answer ALL questions		
 a) Discuss about any two types of kernels with examples. (OR) 		
b) Show that $(1 + x^2)^{\frac{-3}{2}}$ is solution of $y(x) = \frac{1}{1 + x^2} - \int_0^x \frac{t}{1 + x^2} y(t) dt.$ (5)		
c) Convert $y'' - \sin x y' + e^x y = x$ with initial condition $y(0) = 1$, $y'(0) = -1$ to Volterra integral equation of the second kind. Conversely, derive the original differential equation with the initial condition from the integral equation obtained. (15) (OR)		
d) i) If y (x) is continuous and satisfies $y(x) = \lambda \int_0^1 K(x, t)y(t)dt$, where		
$K(x, t) = \begin{cases} (1-t)x, & 0 \le x \le t \\ (1-x)t, & t \le x \le 1. \end{cases}$ then prove that $y(x)$ is also the solution of the		
boundary value problem $\frac{d^2y}{dx^2} + \lambda y = 0$. $y(0) = 0$, $y(1) = 0$. ii) Write about various types of integral equations (10 + 5)		
a) Solve the homogeneous Fredholm equation $y(x) = \lambda \int_0^1 e^x e^t y(t) dt$. (OR)		
b) Solve: $y(x) = e^x + \lambda \int_0^1 2e^x e^t y(t) dt.$ (5)		
c) Determine the eigenvalues and eigenfunctions of the homogeneous integral equation $y(x) = \lambda \int_0^1 K(x,t) y(t) dt$ where $K(x,t) = \begin{cases} (x+1)t, & 0 \le x \le t \\ (t+1)x, & t \le x \le 1. \end{cases}$		
(OR)		
 d) Discuss about the solution of Fredholm integral equation of the second kind with separable kernel. (15) 		
3 a) Write the procedure to write the solution Volterra integral equation using reslovent		

kernel.

(OR) b) Solve $y(x) = x + \int_0^{1/2} y(t) dt$ using resolvent kernel.

(5)

c) Solve by the method of successive approximation:	
$y(x) = \frac{3}{2}e^{x} - \frac{1}{2}xe^{x} - \frac{1}{2} + \frac{1}{2}\int_{0}^{1}t y(t) dt.$	
 (OR) d) Write the solution of Voltera integral equation of the second kind by successi approximations using Neumann series method. . 	.ve (15)
4 a) Show that the shortest distance between two fixed points in the Euclidean plan (OR)	ne is a straight line.
b) Discuss about special cases of Euler's Equation.	(5)
 c) State and prove Euler's Equations. Also derive the second and third forms. (OR) d) i) State and prove Brachistochrone Problem. ii) Prove that the extremal of ∫^{x₂}_{x₁} y(1 + (y')²)^{1/2} dx is a catenary. (8) 	(15) (15)
 5 a) Discuss about proper field with an example. (OR) b) Discuss about pencil of curves with an example. 	(5)
c) Find the shortest distance between $P_1(1,0)$ and the ellipse $4x^2+9y^2 = 36$. (OR)	(15)
d) i) Find the extremal for $J(y) = \int_1^2 (y'^2 + 2yy' + y^2) dx$ where $y(1) = 1$ and arbitrary.	<i>y</i> (2) is
ii) Investigate for an extremum of the functional $I = \int_0^1 (x + 2y + \frac{yr^2}{2}) dx$; $y(y) = \int_0^1 (x + 2y + \frac{yr^2}{2}) dx$	$\begin{array}{ll} 0) = & 0, y(1) = 0. \\ (8 + 7) \end{array}$
#########	