LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FOURTH SEMESTER - APRIL 2022
PMT 4504 - CALCULUS OF VARIATIONS AND INTEGRAL EQUATIONS

Date: 20-06-2022
Dept. No. \square

Answer ALL questions

1. a) Discuss about any two types of kernels with examples.
(OR)
b) Show that $\left(1+x^{2}\right)^{\frac{-3}{2}}$ is solution of $y(x)=\frac{1}{1+x^{2}}-\int_{0}^{x} \frac{t}{1+x^{2}} y(t) d t$.
c) Convert $y^{\prime \prime}-\sin x y^{\prime}+e^{x} y=x$ with initial condition $y(0)=1, y^{\prime}(0)=-1$ to Volterra integral equation of the second kind. Conversely, derive the original differential equation with the initial condition from the integral equation obtained.
(OR)
d) i) If $y(x)$ is continuous and satisfies $y(x)=\lambda \int_{0}^{1} K(x, t) y(t) d t$, where
$K(x, t)=\left\{\begin{array}{ll}(1-t) x, & 0 \leq x \leq t \\ (1-x) t, & t \leq x \leq 1 .\end{array}\right.$ then prove that $y(x)$ is also the solution of the boundary value problem $\frac{d^{2} y}{d x^{2}}+\lambda y=0 . y(0)=0, y(1)=0$.
ii) Write about various types of integral equations

2 a) Solve the homogeneous Fredholm equation $y(x)=\lambda \int_{0}^{1} e^{x} e^{t} y(t) d t$.
(OR)
b) Solve: $y(x)=e^{x}+\lambda \int_{0}^{1} 2 e^{x} e^{t} y(t) d t$.
c) Determine the eigenvalues and eigenfunctions of the homogeneous integral equation $y(x)=\lambda \int_{0}^{1} K(x, t) y(t) d t$ where $K(x, t)= \begin{cases}(x+1) t, & 0 \leq x \leq t \\ (t+1) x, & t \leq x \leq 1 .\end{cases}$
(OR)
d) Discuss about the solution of Fredholm integral equation of the second kind with separable kernel.

3 a) Write the procedure to write the solution Volterra integral equation using reslovent kernel.
(OR)
b) Solve $y(x)=x+\int_{0}^{1 / 2} y(t) d t$ using resolvent kernel.
c) Solve by the method of successive approximation:

$$
y(x)=\frac{3}{2} e^{x}-\frac{1}{2} x e^{x}-\frac{1}{2}+\frac{1}{2} \int_{0}^{1} t y(t) d t .
$$

(OR)
d) Write the solution of Voltera integral equation of the second kind by successive approximations using Neumann series method.

4 a) Show that the shortest distance between two fixed points in the Euclidean plane is a straight line. (OR)
b) Discuss about special cases of Euler's Equation.
c) State and prove Euler's Equations. Also derive the second and third forms.
(OR)
d) i) State and prove Brachistochrone Problem.
ii) Prove that the extremal of $\int_{x_{1}}^{x_{2}} y\left(1+\left(y^{\prime}\right)^{2}\right)^{1 / 2} d x$ is a catenary. $\quad(8+7)$

5 a) Discuss about proper field with an example.
(OR)
b) Discuss about pencil of curves with an example.
c) Find the shortest distance between $P_{1}(1,0)$ and the ellipse $4 x^{2}+9 y^{2}=36$. (OR)
d) i) Find the extremal for $J(y)=\int_{1}^{2}\left(y^{\prime 2}+2 y y^{\prime}+y^{2}\right) d x$ where $y(1)=1$ and $y(2)$ is arbitrary.
ii) Investigate for an extremum of the functional $I=\int_{0}^{1}\left(x+2 y+\frac{y y^{2}}{2}\right) d x ; y(0)=0, y(1)=0$.

$$
(8+7)
$$

