LOTOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034	
B.Sc. DEGREE EXAMINATION – MATHEMATICS	
FIRST SEMESTER – APRIL 2022	
UMT 1501 – ALGEBRA	
(19 & 20 BATCH ONLY)	
Date: 15-06-2022 Dept. No.	Max. : 100 Marks
Time: 09:00 AM - 12:00 NOON	
PART – A	
Answer ALL questions.	$(10 \times 2 = 20)$
1. Form a quadratic equation, given that $-2 + \sqrt{-7}$ is a root. 2. Define reciprocal equation.	
3. Find the number of real roots of the equation $x^3 + 18x - 6 = 0$.	
4. Find the interval in which a root of the equation $x^3 - 2x^2 - 3x - 4 = 0$ lies.	
5. State Cayley Hamilton theorem.	
6. Use Binomial Theorem to find the 3 rd power of 11.	
7. What is the Characteristic equation of a matrix?	
 Define similar matrices. Find the number of integers less than and prime to 720. 	
10. Find the number of divisors of 360.	
FARI - B	
Answer any FIVE questions:	$(5 \times 8 = 40)$
11. Show that the sum of the eleventh powers of the roots of $x^7 + 5x^4 + 1 = 0$ is zero.	
12. Diminish the roots of the ex + $4x + 24 = 0$ by 2 and write the transformed equation.	uation $x^4 - x^3 - 10x^2$
13. State and prove Fermat's theorem.	
14. Solve $x^3 - 27x + 54 = 0$ by Cardon's method.	
15. Find the sum of the series to infinity using binomial series expansion $\frac{15}{16} + \frac{15.21}{16.24} + \frac{15.21.27}{16.25.32} + \cdots$	
16. Find the characteristic equation of the matrix $A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$ and hence find its inverse	
17. Verify Cayley Hamilton theorem for the matrix $A = \begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$.	
18. Show that $3^{2n+1} + 2^{n+2}$ is divisible by 7.	
PART- C	
Answer Any TWO Questions.	(2 X 20 = 40)

]

- 19. a) Prove that the roots of the equation $x^4 + px^3 + qx^2 + rx + s = 0$ are in arithmetic progression, if $2p^3 9pq + 27r = 0$.
 - b.) Solve the equation $6x^5 x^4 43x^3 + 43x^2 + x 6 = 0.$ (8+12)
- 20. Using Horner's Method find the root of the equation $x^3 3x + 1 = 0$ which lies between 1 and 2 correct to three decimal places.
- 21. a.) Show that $\log \sqrt{12} = 1 + \left(\frac{1}{2} + \frac{1}{3}\right) \cdot \frac{1}{4} + \left(\frac{1}{4} + \frac{1}{5}\right) \cdot \frac{1}{4^2} + \left(\frac{1}{6} + \frac{1}{7}\right) \cdot \frac{1}{4^3} + \cdots$ b.) Sum the infinite series $\frac{3}{2!} + \frac{5}{4!} + \frac{7}{61} + \cdots$ (10+10)
- 22. Determine the eigen values and eigen vectors of the matrix $A = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$

aaaaaaaa