LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - APRIL 2022
UMT 1501 - ALGEBRA
(19 \& 20 BATCH ONLY)

Date: 15-06-2022
Dept. No. \square Max. : 100 Marks

PART - A

Answer ALL questions.
$(10 \times 2=20)$

1. Form a quadratic equation, given that $--2+\sqrt{-7}$ is a root.
2. Define reciprocal equation.
3. Find the number of real roots of the equation $x^{3}+18 x-6=0$.
4. Find the interval in which a root of the equation $x^{3}-2 x^{2}-3 x-4=0$ lies.
5. State Cayley Hamilton theorem.
6. Use Binomial Theorem to find the $3^{\text {rd }}$ power of 11 .
7. What is the Characteristic equation of a matrix?
8. Define similar matrices.
9. Find the number of integers less than and prime to 720.
10. Find the number of divisors of 360 .
PART - B

Answer any FIVE questions:

11. Show that the sum of the eleventh powers of the roots of $x^{7}+5 x^{4}+1=0$ is zero.
12. Diminish the roots of the equation $x^{4}-x^{3}-10 x^{2}$ $+4 x+24=0$ by 2 and write the transformed equation.
13. State and prove Fermat's theorem.
14. Solve $x^{3}-27 x+54=0$ by Cardon's method.
15. Find the sum of the series to infinity using binomial series expansion $\frac{15}{16}+\frac{15.21}{16.24}+\frac{15.21 .27}{16.25 .32}+\cdots$.
16. Find the characteristic equation of the matrix $A=\left(\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right)$ and hence find its inverse
17. Verify Cayley Hamilton theorem for the matrix $A=\left(\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right)$.
18. Show that $3^{2 n+1}+2^{n+2}$ is divisible by 7 .

PART- C

Answer Any TWO Questions.
($2 \times 20=40$)
19. a) Prove that the roots of the equation $x^{4}+p x^{3}+q x^{2}+r x+s=0$ are in arithmetic progression, if $2 p^{3}-9 p q+27 r=0$.
b.) Solve the equation $6 x^{5}-x^{4}-43 x^{3}+43 x^{2}+x-6=0$.
20. Using Horner's Method find the root of the equation $x^{3}-3 x+1=0$ which lies between 1 and 2 correct to three decimal places.
21. a.) Show that $\log \sqrt{12}=1+\left(\frac{1}{2}+\frac{1}{3}\right) \cdot \frac{1}{4}+\left(\frac{1}{4}+\frac{1}{5}\right) \cdot \frac{1}{4^{2}}+\left(\frac{1}{6}+\frac{1}{7}\right) \cdot \frac{1}{4^{3}}+\cdots$.
b.) Sum the infinite series $\frac{3}{2!}+\frac{5}{4!}+\frac{7}{61}+\cdots$.
22. Determine the eigen values and eigen vectors of the matrix $A=\left(\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right)$

