	LOYOLA COLLEGE (AUTONOMOUS), CHENNAI –	600 034	
K	B.Sc. DEGREE EXAMINATION – MATHEMATIC	s	
2	FIRST SEMESTER – APRIL 2022		
2	UMT 1502 – CALCULUS		
	(21 BATCH ONLY)		
D	ate: 18-06-2022 Dept No	$M_{2X} \cdot 100 M$	arks
Ti	me: 09:00 AM - 12:00 NOON	Max 100 M	laiks
	SECTION A		
Ans	swer ALL the Questions		
1.	Answer the following	(5 x 1	= 5)
a)	State the chain rule for differentiation.	K1	CO1
b)	Define evolute of a curve.	K1	CO1
c)	State any two properties of definite integral.	K1	CO1
d)	State a result on Jacobians.	K1	CO1
e)	Define beta integral.	K1	CO1
2.	Fill in the blanks	(5 x 1	= 5)
a)	If <i>u</i> , <i>v</i> are functions of <i>x</i> , then $\frac{d}{dx}(uv) =$	K1	CO1
b)	The slope of the curve $r = e^{\theta}$ at $\theta = 0$ is	K1	CO1
c)	$\int e^{ax} \sin(bx) dx = \underline{\qquad}.$	K1	CO1
d)	$\int_0^1 \int_0^1 dx dy = \$	K1	CO1
e)	If <i>n</i> is a natural number, then $\Gamma(n + 1) = $	K1	CO1
3.	Choose the correct answer	(5 x 1	= 5)
a)	What is $\frac{d}{dx}(\sin 2x)$?	K2	CO1
	i. $\cos 2x$		
	ii. $\sin 2x$		
	$\frac{\cos 2x}{2}$		
	$\frac{1}{1}$ $\frac{\sin 2x}{2}$		
1.)	$\frac{1}{2}$	кл	CO1
b)	what is the formula to find the subnormal of a curve at a point?	K2	001
	1. $y \frac{1}{dx}$		
	ii. $y \div \frac{dy}{dx}$		
	iii. $\frac{dy}{dx}$		
	$\frac{dx}{dx}$		
L	dy		

c)	What is $\frac{\partial}{\partial x}(4x^2y + y^3)$?	K2	CO1
	$i_{x} = 2xv$		
	ii. $8xy$		
	iii. $4x^2 + 3y^2$		
	iv. 0		
d)	What is $\int_{a}^{1} \int_{a}^{1} dx dy dz$?	K2	CO1
	1. U ii 1		
	iv 3		
e)	What is $\mathcal{B}(1,1)$?	K2	CO1
•)	i 0		
	ii 6		
	iii. 1		
	iv1		
4.	Say True or False.	(5 x 1	l = 5)
a)	The n th derivative of e^{2x} is e^{2nx} .	K2	CO1
b)	The slope of the curve $y = mx + c$ is <i>m</i> .	K2	CO1
c)	The value of $\int_{a}^{b} f(x) dx$ is equal to $\int_{a}^{b} f(a+b-x) dx$.	K2	CO1
d)	The Jacobian matrix of a vector-valued function of several variables is the matrix of	K2	CO1
	all its first-order partial derivatives.		
e)	The value of $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.	K2	CO1
	SECTION B		<u> </u>
Ans	wer any TWO of the following (2 x		0)
5.	Calculate the maximum and minimum values of the function	K3	CO2
	$f(x, y) = 2(x^2 - y^2) - x^4 + y^4.$		
6.	Find the angle of intersection of the cardioids	K3	CO2
	$r = a(1 + \cos\theta)$ and $r = b(1 - \cos\theta)$.		
7.	Show that $\int_0^{\frac{\pi}{2}} \frac{\sin^{\frac{3}{2}x}}{\sin^{\frac{3}{2}x} + \cos^{\frac{3}{2}x}} dx = \frac{\pi}{4}.$	К3	CO2
8.	Prove that $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.	K3	CO2
	SECTION C		
Ans	swer any TWO of the following (2	x 10 = 2	0)
9.	Show that the maximum value of $x^2y^2z^2$ subject to the restriction	K4	CO3
	$x^2 + y^2 + z^2 = a^2 \text{ is } \left(\frac{a^2}{3}\right)^3.$		

10		K4	CO3	
10.	Find the angle at which the radius vector cuts curve $\frac{1}{r} = 1 + e \cos \theta$.	12.1	005	
11.	Establish a reduction formula for $\int \sin^m x \cos^n x dx$, where <i>m</i> , <i>n</i> are positive integers.	K4	CO3	
12.	Evaluate $\int_0^1 x^m (\log(\frac{1}{x}))^n dx$.	K4	CO3	
	SECTION D			
Answer any ONE of the following (1 x				
13.	Evaluate the minimum value of $u = a^3x^2 + b^3y^2 + c^3z^2$ where $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$.	K5	CO4	
14.	(a) By transforming into polar coordinates, evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$. (10)	K5	CO4	
	(b) Evaluate $\iint \iint \frac{dxdydz}{(x+y+z+1)^3}$ taken over the volume bounded by the planes			
	x = 0, y = 0, z = 0 and x + y + z = 1.	K5	CO4	
	(10)			
	SECTION E			
Answer any ONE of the following (1 x			x 20 = 20)	
15.	Show that in the parabola $y^2 = 4ax$ at the point <i>t</i> , the radius of curvature	K6	CO5	
	$\rho = -2a(1+t^2)^{\frac{2}{3}}$ and the centre of curvature is $C(X,Y)$ where $X = 2a + 3at^3$ and			
	$Y = -2at^3$. Hence deduce the equation of the evolute.			
16.	Deduce the value of $\beta(10,15)$ by establishing the relation between Beta and	K6	CO5	
	Gamma functions.			
ā			.ē	

aaaaaa