LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - APRIL 2022
UMT 1502 - CALCULUS
(21 BATCH ONLY)

Date: 18-06-2022
Dept. No.
Max. : 100 Marks
Time: 09:00 AM - 12:00 NOON

SECTION A

Answer ALL the Questions

1.	Answer the following	(5 $\times 1=5$)	
a)	State the chain rule for differentiation.	K1	CO1
b)	Define evolute of a curve.	K1	COI
c)	State any two properties of definite integral.	K1	COI
d)	State a result on Jacobians.	K1	CO1
e)	Define beta integral.	K1	COI

2. Fill in the blanks
a) If u, v are functions of x, then $\frac{d}{d x}(u v)=$ \qquad .
b) The slope of the curve $r=e^{\theta}$ at $\theta=0$ is \qquad .
c) $\int e^{a x} \sin (b x) d x=$ \qquad .
d) $\int_{0}^{1} \int_{0}^{1} d x d y=$ \qquad .
e) If n is a natural number, then $\Gamma(n+1)=$ \qquad .

K 1	$\mathrm{CO1}$
K 1	$\mathrm{CO1}$
K 1	CO 1
K 1	$\mathrm{CO1}$
K 1	$\mathrm{CO1}$

3. Choose the correct answer
a) What is $\frac{d}{d x}(\sin 2 x)$?
i. $\quad \cos 2 x$
ii. $\sin 2 x$
iii. $\frac{\cos 2 x}{2}$
iv. $\frac{\sin 2 x}{2}$
b) What is the formula to find the subnormal of a curve at a point?
i. $y \frac{d y}{d x}$
ii. $y \div \frac{d y}{d x}$
iii. $\frac{d y}{d x}$
iv. $\frac{d x}{d y}$

c)	What is $\frac{\partial}{\partial x}\left(4 x^{2} y+y^{3}\right)$? i. $2 x y$ ii. $8 x y$ iii. $\quad 4 x^{2}+3 y^{2}$ iv. 0	K2	CO1
d)	What is $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} d x d y d z$? i. 0 ii. 1 iii. 2 iv. 3	K2	COI
e)	What is $\beta(1,1)$? i. 0 ii. 6 iii. 1 iv. -1	K2	COI
4.	Say True or False.		
a)	The $\mathrm{n}^{\text {th }}$ derivative of $e^{2 x}$ is $e^{2 n x}$.	K2	COI
b)	The slope of the curve $y=m x+c$ is m.	K2	COI
c)	The value of $\int_{a}^{b} f(x) d x$ is equal to $\int_{a}^{b} f(a+b-x) d x$	K2	COI
d)	The Jacobian matrix of a vector-valued function of several variables is the matrix of all its first-order partial derivatives.	K2	COI
e)	The value of $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.	K2	COI
SECTION B			
Answer any TWO of the following		($2 \times 10=20$)	
5.	Calculate the maximum and minimum values of the function $f(x, y)=2\left(x^{2}-y^{2}\right)-x^{4}+y^{4} .$	K3	CO 2
6.	Find the angle of intersection of the cardioids $r=a(1+\cos \theta) \text { and } r=b(1-\cos \theta) .$	K3	CO 2
7.	Show that $\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2} x}}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} d x=\frac{\pi}{4}$.	K3	$\mathrm{CO2}$
8.	Prove that $\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$.	K3	CO 2
SECTION C			
Answer any TWO of the following		$(2 \times 10=20)$	
9.	Show that the maximum value of $x^{2} y^{2} z^{2}$ subject to the restriction $x^{2}+y^{2}+z^{2}=a^{2}$ is $\left(\frac{a^{2}}{3}\right)^{3}$.	K4	CO3

