LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS
SECOND SEMESTER - APRIL 2022

UMT 2501 - ANALYTICAL GEOMETRY

Date: 16-06-2022
Dept. No.
Max. : 50 Marks
Time: 01:00-04:00

Part A (Answer ALL questions)

$(10 \times 2=20)$

1. Write the condition for a line $y=m x+c$ to be a tangent to the parabola $y^{2}=4 a x$.
2. Define Polar Co-ordinates.
3. Find the point to the pole of the line $A x+B y+C=0$ with respect to the parabola $y^{2}=4 a x$.
4. If the asymptotes of the hyperbola is $l x+m y+n=0$ and $l_{1} x+m_{1} y+n_{1}=0$, then what is the equation of the hyperbola?
5. Write the centre and radius for the general equation of a sphere.
6. Define great circle.
7. Show that the points $(5,3,-2),(3,2,1),(-1,0,7)$ are collinear.
8. Prove that the line $\frac{x-1}{2}=\frac{y-3}{3}=\frac{z-4}{-1}$ is parallel to the plane $x-2 y-4 z+7=0$.
9. Find the equation of the sphere through the circle $x^{2}+y^{2}+z^{2}=9,2 x+3 y+4 z=5$ and the given point $(1,2,3)$.
10. Define enveloping cylinder.

Part B (Answer any FIVE questions)

11. Identify the locus of the poles of chords of a parabola subtending a right angle at the vertex.
12. The chords of the parabola are drawn through a fixed point. Show that the locus of the middle point is another parabola.
13. Find the asymptotes of the hyperbola $3 x^{2}-5 x y-2 y^{2}+17 x+y+14=0$.
14. If e_{1} and e_{2} are the eccentricities of a hyperbola and its conjugate, the prove that $\frac{1}{e_{1}^{2}}+\frac{1}{e_{2}^{2}}=1$.
15. Find the equation of the plane through the intersection of two planes $x+y+z=1,2 x+3 y+4 z-7=0$ and perpendicular to the plane $x-5 y+3 z=5$.
16. Find the equation of the plane passing through two points $(-1,3,2)$ and perpendicular to the two planes $x+2 y+2 z=5$ and $3 x+3 y+2 z=8$
17. A spehere of radius k passes through the origin and meets the axis in A, B and C. Prove that the centroid of the triangle $A B C$ lies on the sphere $9\left(x^{2}+y^{2}+z^{2}\right)=4 k^{2}$.
18. Prove that the circles $x^{2}+y^{2}+z^{2}-2 x+3 y+4 z-5=0,5 y+6 z+1=0$ and the $x^{2}+y^{2}+z^{2}-$ $3 x-4 y+5 z-6=0, x+2 y-7 z=0$ lie on the same sphere and find its equation.
19. (a) If P and Q are the eccentricities of the conjugate diameters of the ellipse, then prove the following:
a. The locus of the middle point of PQ is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{1}{2}$.
b. The locus of the foot of the perpendicular on PQ from the centre of the ellipse is $a^{2} x^{2}+b^{2} y^{2}=$ $2\left(x^{2}+y^{2}\right)^{2}$.
(b) Prove that the tangent to a rectangular hyperbola terminated by its asymptotes is bisected at the point of contact and encloses a triangle of constant area.
($\mathbf{1 0 + 1 0)}$
20. (a) Show that the locus of the intersection of tangents to $y^{2}=4 a x$ which intersect a constant length ' d ' on the directrix is $\left(y^{2}=4 a x\right)(x+a)^{2}=d^{2} x^{2}$.
(b) Find the angle between the lines joining the points $(3,1,-2),(4,0,-4)$ and $(4,-3,3)$, $(6,-2,2)$.
$(10+10)$
21. (a) Trace the conic $\frac{12}{r}=4+\sqrt{3} \cos \theta+3 \sin \theta$.
(b) A line makes angels $\alpha, \beta, \gamma, \delta$ with the four diagonals of a cube. Prove that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+$ $\cos ^{2} \delta=\frac{4}{3}$.
22. (a) Find the equation of the sphere which passes through the circle $x^{2}+y^{2}+z^{2}-2 x-4 y=0, x+2 y+$ $3 z=8$ and touches the plane $4 x+3 y=25$.
(b) Show that the equation of the right circular cone whose vertex is O and axis $O Z$ and the semi vertical angle α is $x^{2}+y^{2}=z^{2} \tan ^{2} \alpha$.
(10+10)
