LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – MATHEMATICS

SECOND SEMESTER - APRIL 2022

UMT 2502 – TRIGONOMETRY, FOURIER SERIES AND VECTOR ANALYSIS

Dept. No. Date: 18-06-2022 Time: 01:00 PM - 04:00 PM

PART – A

Answer ALL the Questions:

- 1. Express $\sin x$ in terms of powers of x.
- 2. Give the expression for $x^n + \frac{1}{x^n}$ when $x = \cos y + i \sin y$.
- 3. Write down $cosh^{-1}x$ in terms of logarithmic function.
- 4. Determine $\text{Log}_e(-5)$.
- 5. Expand b_n in the Fourier series expansion for f(x) in the interval $0 \le x \le 2\pi$.
- 6. What are the conditions for a function f to have a Fourier series expansion?
- 7. Define derivative of a vector-valued function of a scalar variable t.
- 8. Give a geometrical interpretation for gradient of real-valued function φ .
- 9. If S is any closed surface, find $\iint_{S} (ax\vec{i} + by\vec{j} + cz\vec{k}) \cdot \vec{n} \, dS$.
- 10. Recall and state Green's theorem.

PART – B

Answer any FIVE of the following:

- 11. Express $\cos 8x$ in terms of $\sin x$.
- 12. Find $\lim_{x\to 0} \frac{\tan x + \sec x 1}{\tan x \sec x + 1}$
- 13. If $cos(x + iy) = cos\theta + isin\theta$, prove that cos2x + cosh2y = 2.

14. If tan(x + iy) = u + iv, check whether $\frac{u}{v} = \frac{sin2x}{sinh2v}$.

- 15. Determine a cosine series for the function $f(x) = \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ \pi x, & \frac{\pi}{2} < x < \pi \end{cases}$.
- 16. Estimate the value of b such that the vector $\vec{f} = (bxy z^3)\vec{\iota} + (b-2)x^2\vec{j} + (1-b)xz^2\vec{k}$ is irrotational.
- 17. Prove that $div(r^n\vec{r}) = (n+3)r^n$. Deduce that $r^n\vec{r}$ is solenoidal if and only if n = -3.
- 18. Evaluate $\int_C (x^2 + y^2) dx 2xy dy$ where C is the rectangle in the xy-plane bounded by y = 0, y = b, x = 0 and x = a using Green's theorem.

 $(10 \times 2 = 20)$

Max.: 100 Marks

 $(5 \times 8 = 40)$

<u>PART – C</u>

Answer any TWO of the following:

$$(2 \times 20 = 40)$$

19. a) Establish the formula $16 \sin^5 x = \sin 5x - 5 \sin 3x + 10 \sin x$.

b) Write the real and imaginary parts of $\tan^{-1}(x + iy)$.

20. Express x^2 as $\frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$ in the interval $(-\pi \le x \le \pi)$. Deduce that

a)
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots = \frac{\pi^2}{12}$$
.
b) $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$.

21. a) Predict the angle between the surfaces $x^2 + y^2 + z^2 = 29$ and $x^2 + y^2 + z^2 + 4x - 6y - 8z - 47 = 0$ at (4, -3, 2).

b) Determine the equation of the tangent plane and normal line to the surface xyz = 4 at the point (1,2,2).

22. Check Gauss Divergence theorem for the vector function $\vec{F} = 4xz\vec{\imath} - y^2\vec{\jmath} + yz\vec{k}$ over the cube bounded by x = 0, y = 0, z = 0, x = 2, y = 2, z = 2.

aaaaaaa