LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

UMT 2502 - TRIGONOMETRY, FOURIER SERIES AND VECTOR ANALYSIS

Date: 18-06-2022
Dept. No. \square Max. : 100 Marks
Time: 01:00 PM - 04:00 PM

PART - A

Answer ALL the Questions:

1. Express $\sin x$ in terms of powers of x.
2. Give the expression for $x^{n}+\frac{1}{x^{n}}$ when $x=\cos y+i \sin y$.
3. Write down $\cosh ^{-1} x$ in terms of logarithmic function.
4. Determine $\log _{e}(-5)$.
5. Expand b_{n} in the Fourier series expansion for $f(x)$ in the interval $0 \leq x \leq 2 \pi$.
6. What are the conditions for a function f to have a Fourier series expansion?
7. Define derivative of a vector-valued function of a scalar variable t.
8. Give a geometrical interpretation for gradient of real-valued function φ.
9. If S is any closed surface, find $\iint_{S}(a x \vec{\imath}+b y \vec{\jmath}+c z \vec{k}) \cdot \vec{n} d S$.
10. Recall and state Green's theorem.

$\underline{\text { PART - B }}$

Answer any FIVE of the following:
11. Express $\cos 8 x$ in terms of $\sin x$.
12. Find $\lim _{x \rightarrow 0} \frac{\tan x+\sec x-1}{\tan x-\sec x+1}$.
13. If $\cos (x+i y)=\cos \theta+i \sin \theta$, prove that $\cos 2 x+\cosh 2 y=2$.
14. If $\tan (x+i y)=u+i v$, check whether $\frac{u}{v}=\frac{\sin 2 x}{\sinh 2 y}$.
15. Determine a cosine series for the function $f(x)=\left\{\begin{array}{ll}x, & 0<x<\frac{\pi}{2} \\ \pi-x, & \frac{\pi}{2}<x<\pi\end{array}\right.$.
16. Estimate the value of b such that the vector $\vec{f}=\left(b x y-z^{3}\right) \vec{\imath}+(b-2) x^{2} \vec{\jmath}+(1-b) x z^{2} \vec{k}$ is irrotational.
17. Prove that $\operatorname{div}\left(r^{n} \vec{r}\right)=(n+3) r^{n}$. Deduce that $r^{n} \vec{r}$ is solenoidal if and only if $n=-3$.
18. Evaluate $\int_{C}\left(x^{2}+y^{2}\right) d x-2 x y d y$ where C is the rectangle in the $x y$-plane bounded by $y=0, y=b$, $x=0$ and $x=a$ using Green's theorem.

PART - C

Answer any TWO of the following:
19. a) Establish the formula $16 \sin ^{5} x=\sin 5 x-5 \sin 3 x+10 \sin x$.
b) Write the real and imaginary parts of $\tan ^{-1}(x+i y)$.
20. Express x^{2} as $\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty}(-1)^{n} \frac{\cos n x}{n^{2}}$ in the interval $(-\pi \leq x \leq \pi)$. Deduce that
a) $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\cdots=\frac{\pi^{2}}{12}$.
b) $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{6}$.
21. a) Predict the angle between the surfaces $x^{2}+y^{2}+z^{2}=29$ and $x^{2}+y^{2}+z^{2}+4 x-6 y-8 z-$ $47=0$ at $(4,-3,2)$.
b) Determine the equation of the tangent plane and normal line to the surface $x y z=4$ at the point $(1,2,2)$.
22. Check Gauss Divergence theorem for the vector function $\vec{F}=4 x z \vec{\imath}-y^{2} \vec{\jmath}+y z \vec{k}$ over the cube bounded by $x=0, y=0, z=0, x=2, y=2, z=2$.

