LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

SECOND SEMESTER - APRIL 2022

UMT 2502 - TRIGONOMETRY, FOURIER SERIES AND VECTOR ANALYSIS (21 BATCH ONLY)

Date: 18-06-2022
Dept. No. \square Max. : 100 Marks
Time: 01:00 PM - 04:00 PM
SECTION - A
Answer ALL the Questions

1. Answer the following:
($5 \times 1=5$)
a) Expand $\sin n x$.

K1 CO1
b) Write an expression for $\cosh ^{-1} x$.

K1 CO1
c) State the Fourier series expansion for $f(x)$ in the interval $0 \leq x \leq 2 \pi . \quad$ K1 $\begin{aligned} & \text { CO1 }\end{aligned}$

| e) Write the statement of Stoke's theorem. | K1 | CO1 |
| :--- | :--- | :--- | :--- |

2. Fill in the blanks
($5 \times 1=5$)
a) In terms of x, the series expansion of $\cos x$ is \qquad .

K1 CO1
b) $\sinh (x+y)=$
c) Fourier coefficient b_{n} for $f(x)=x$ in $-\pi<x<\pi$ is \qquad .

K1 CO1
d) The operator ∇^{2} is called

K1 CO1
e) Suppose a particle acted upon by a force \vec{F} describes an arc C on moving from a point

K1 CO1
\vec{r} to a point $\vec{r}+\Delta \vec{r}$ then the work done is \qquad .
3. Choose the correct answer for the following

In the expansion of $\left(\cos x+\cos \frac{1}{x}\right)^{n}$, for n being even, the term independent of x is
a)
(i) $n C_{\frac{n}{2}}$
(ii) $n C_{\frac{n}{2}+1}$
(iii) $n C_{\frac{n-1}{2}}$
(iv) $n C_{\frac{n+1}{2}}$
b)
$\tanh ^{-1} x=$
K2 CO 1
(i) $\frac{1}{2} \log _{e}\left(\frac{1+x}{1-x}\right)$
(ii) $\frac{1}{2} \log _{e}\left(\frac{1-x}{1+x}\right)$
(iii) $\frac{1}{2} \log _{e}\left(\frac{x-1}{x+1}\right)$
(iv) $\log _{e}\left(\frac{1+x}{x}\right)$

Fourier coefficient a_{0} in the half range cosine series of the function $f(x)=\pi x-x^{2}$ in
c) $0 \leq x \leq \pi$ is
(i) $\frac{\pi}{3}$
(ii) $\frac{\pi^{2}}{3}$
(iii) $\frac{\pi}{6}$
(iv) $\frac{\pi^{3}}{3}$
d) A vector \vec{f} is called a harmonic vector if
(i) $\nabla \vec{f}=0$
(ii) $\nabla^{2} \vec{f}=0$
(iii) $\nabla \vec{f}=1$
(iv) $\nabla^{2} \vec{f}=1$

If R is a closed region of the $x y$ - plane bounded by a simple closed curve C and M, N are continuous functions of x and y having continuous first order partial derivatives in
e)
R, then $\int_{C} M d x+N d y$ equals
(i) $\iint_{R}\left(\frac{\partial \mathrm{~N}}{\partial x}+\frac{\partial \mathrm{M}}{\partial y}\right) d x d y$
(ii) $\iint_{R}\left(\frac{\partial \mathrm{~N}}{\partial y}-\frac{\partial \mathrm{M}}{\partial x}\right) d x d y$
(iii) $\iint_{R}\left(\frac{\partial \mathrm{~N}}{\partial x}-\frac{\partial \mathrm{M}}{\partial y}\right) d x d y$
(iv) $\iint_{R}\left(\frac{\partial \mathrm{~N}}{\partial y}+\frac{\partial \mathrm{M}}{\partial x}\right) d x d y$
4. Say TRUE or FALSE
a) The series expansion of $\sin \pi$ is $1+\frac{\pi^{2}}{2!}+\frac{\pi^{4}}{4!}+\cdots$.

b)	$\log _{e}(-5)=\log 5+i(2 n+1) \pi$.	K2	CO1
c)	Coefficient a_{0} in the Fourier series expansion for the function $f(x)=e^{x}$ defined in $-\pi<x<\pi$ is $\frac{2}{\pi} \sinh \pi$.	K2	CO1
d)	The gradient of a scalar-valued function is a vector.	K2	CO1
e)	If S is a closed surface, then $\iint_{S} \vec{r} \cdot \vec{n} d S=3 V$ where V is the volume enclosed by S.	K2	CO1
SECTION - B			
Answer any TWO of the following in 100 words		$(2 \times 10=20)$	
5.	Find $\lim _{x \rightarrow 0} \frac{\tan x+\sec x-1}{\tan x-\sec x+1}$.	K3	CO 2
6.	If $\tan (x+i y)=u+i v$, check whether $\frac{u}{v}=\frac{\sin 2 x}{\sinh 2 y}$.	K3	CO 2
7.	Derive a sine series for the function $f(x)=\left\{\begin{array}{l}x, 0<x<\frac{\pi}{2} \\ 0, \frac{\pi}{2}<x<\pi\end{array}\right.$.	K3	CO 2
8.	If $\varphi=x^{2} z+e^{y / x}$ and $\psi=2 z^{2} y-x y^{2}$, determine $\nabla(\varphi+\psi)$ and $\nabla(\varphi \psi)$ at $(1,0,2)$.	K3	CO 2
SECTION C			
Answer any TWO of the following in 100 words		(2x10=20)	
9.	Evaluate $\lim _{x \rightarrow 0} \frac{\sin 2 x-2 \sin x}{x^{3}}$.	K4	CO3
10.	If $\cos (x+i y)=\cos \theta+i \sin \theta$, show that $\cos 2 x+\cosh 2 y=2$.	K4	CO3
11.	Determine a cosine series for the function $f(x)=\left\{\begin{array}{ll}x, & 0<x<\frac{\pi}{2} \\ \pi-x, & \frac{\pi}{2}<x<\pi\end{array}\right.$.	K4	CO 3
12.	Check Green's theorem for $\int_{C}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is the boundary of the region R enclosed by $y=x^{2}$ and $x=y^{2}$.	K4	CO3
SECTION - D			
Answer any ONE of the following in 250 words ${ }^{\text {a }}$ (a) Show that $2^{6} \cos ^{7} x=\cos 7 x+7 \cos 5 x+21 \cos 3 x+35 \cos x$. (10 Marks)		$=2$	
		K5	CO4
13.	(b) Construct a series of hyperbolic cosines of multiples of θ for $\sinh ^{6} \theta$ and $\cosh ^{6} \theta$. (10 Marks)		
14.	(a) Express the function $f(x)=\left\{\begin{array}{l}x+1, \quad 0<x<\pi \\ x-1, \quad-\pi<x<0\end{array}\right.$ in $(-\pi \leq x \leq \pi)$ as a Fourier series. (10 Marks)	K5	CO4
	(b) Prove that $\vec{f}=\left(y^{2}-z^{2}+3 y z-2 x\right) \vec{\imath}+(3 x z+2 x y) \vec{\jmath}+(3 x y-2 x z+2 z) \vec{k}$ is both irrotational and solenoidal. (10 Marks)		
SECTION - E			
Answer any ONE of the following in 250 words $\quad 1 \times 2$		0 $=20$)	
15.	Develop a Fourier series for x^{2} as $\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty}(-1)^{n} \frac{\cos n x}{n^{2}}$ in the interval $(-\pi \leq x \leq$ π). Deduce that (a) $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\cdots=\frac{\pi^{2}}{12}$. (b) $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{6}$.	K6	CO5
16.	Given a vector-valued function $\vec{F}=\left(x^{3}-y z\right) \vec{\imath}-2 x^{2} y \vec{\jmath}+2 \vec{k}$, verify Gauss Divergence theorem for \vec{F} over the cube bounded by $x=0, y=0, z=0, x=2, y=2, z=$ 2.	K6	CO5
@@@@@@@			

