LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - PHYSICS

FOURTH SEMESTER - APRIL 2022

UMT 4402 - MATHEMATICS FOR PHYSICS - II

Date: 27-06-2022
Time: 09:00 AM - 12:00 NOON

Part A

Answer ALL the questions
\square Max. : 100 Marks

1. Find the constant a_{0} of the Fourier series for the function $f(x)=x$ in $0<x<2 \pi$.
2. Obtain the sine series for unity in $(0, \pi)$.
3. What is Clairut's equations?
4. What is a particular solution of differential equation?
5. Define Linear differential equation.
6. If the roots are real and distinct that is α and β, then what is complementary function?
7. Find $L\left[t^{2} e^{-3 t}\right]$.
8. Find $L^{-1}\left[\frac{s}{(s-b)^{2}+a^{2}}\right]$.
9. Find the directional derivative of $\varphi=x^{2} y z+4 x z^{2}$ at $(1,-2,-1)$ in the direction of $2 \vec{\imath}-\vec{\jmath}-2 \vec{k}$.
10. Find 'a' such that $(3 x-2 y+z) \vec{\imath}+(4 x+a y-z) \vec{\jmath}+(x-y+2 z) \vec{k}$ is solenoidal.

Part B

Answer any FIVE questions

$$
(5 \times 8=40)
$$

11. Find the Fourier series to represent $x-x^{2}$ from $x=-\pi$ to $x=\pi$.
12. Obtain the Fourier expansion of $x \sin x$ as a cosine series in $(0, \pi)$.
13. Solve $\left(D^{4}-1\right) y=\cos x \cos h x$.
14. Solve the differential equation $(1+x y) y d x+(1-x y) x d y=0$.
15. Solve the differential equation $\frac{y+x-2}{y-x-4}$.
16. Find
(i) $L\left[t^{2} e^{t} \sin t\right]$,
(ii) $L\left[\frac{1-\cos t}{t}\right]$.
17. Find (i) $L^{-1}\left[\frac{5 s^{2}-15 s-11}{(s+1)(s-2)^{3}}\right]$,
(ii) $L^{-1}\left[\frac{1}{s\left(s^{2}-2 s+5\right)}\right]$.
18. Using Green's theorem, evaluate $\int_{C}\left\{\left(3 x-8 y^{2}\right) d x+(4 y-6 x y) d y\right\}$ where C is the boundary of the region given by $x=0, y=0, x+y=1$.

Part C

Answer any TWO question

$$
(2 \times 20=40)
$$

19. (a) Find the Fourier series expansion of the periodic function $f(x)$ of the period 4 defined by $f(x)=\left\{\begin{array}{cc}1+x & -2 \leq x \leq 0 \\ 1-x & 0 \leq x \leq 2\end{array}\right.$. Hence deduce that $\sum_{1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8}$.
(b) Find a Fourier series to represent x^{2} in the interval $(-l, l)$.
20. (a) Solve the differential equation $x \frac{d y}{d x}+y=x^{3} y^{6}$.
(b) Solve $\left(D^{2}-6 D+25\right) y=e^{2 x}+\sin x+x$.
$(10+10)$
21. (a) Solve $\frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}-5 y=5$ given that $y=0, \frac{d y}{d t}=2$ when $t=0$.
(b) Using convolution theorem find $L^{-1}\left[\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right]$.
(15+5)
22. (a) Verify Gauss Divergence theorem for $\vec{F}=4 x z \vec{\imath}-y^{2} \vec{\jmath}+y z \vec{k}$ over the cube bounded by $x=0, x=1, y=0, y=1, z=0, z=1$.
(b) If $\vec{F}=x^{2} y \vec{\imath}+y^{2} z \vec{\jmath}+z^{2} x \vec{k}$, then find $\operatorname{curl}(\operatorname{curl} \vec{F})$.
