LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **PHYSICS**

FOURTH SEMESTER – APRIL 2022

UMT 4402 – MATHEMATICS FOR PHYSICS - II

Date: 27-06-2022 Dept. No. Time: 09:00 AM - 12:00 NOON

<u>Part A</u>

Answer ALL the questions

- 1. Find the constant a_0 of the Fourier series for the function f(x) = x in $0 < x < 2\pi$.
- 2. Obtain the sine series for unity in $(0, \pi)$.
- 3. What is Clairut's equations?
- 4. What is a particular solution of differential equation?
- 5. Define Linear differential equation.
- 6. If the roots are real and distinct that is α and β , then what is complementary function?
- 7. Find $L[t^2e^{-3t}]$.

8. Find
$$L^{-1}[\frac{s}{(s-b)^2+a^2}]$$
.

- 9. Find the directional derivative of $\varphi = x^2yz + 4xz^2$ at (1,-2,-1) in the direction of $2\vec{i} \vec{j} 2\vec{k}$.
- 10. Find 'a' such that $(3x 2y + z)\vec{i} + (4x + ay z)\vec{j} + (x y + 2z)\vec{k}$ is solenoidal.

<u>Part B</u>

Answer any FIVE questions

- 11. Find the Fourier series to represent $x x^2$ from $x = -\pi$ to $x = \pi$.
- 12. Obtain the Fourier expansion of *x* sinx as a cosine series in $(0, \pi)$.
- 13. Solve $(D^4 1)y = \cos x \cos hx$.
- 14. Solve the differential equation (1 + xy)ydx + (1 xy)xdy = 0.
- 15. Solve the differential equation $\frac{y+x-2}{y-x-4}$
- 16. Find (i) $L[t^2e^t sint]$, (ii) $L[\frac{1-cost}{t}]$.
- 17. Find (i) $L^{-1}\left[\frac{5s^2-15s-11}{(s+1)(s-2)^3}\right]$, (ii) $L^{-1}\left[\frac{1}{s(s^2-2s+5)}\right]$.
- 18. Using Green's theorem, evaluate $\int_C \{(3x 8y^2)dx + (4y 6xy)dy\}$ where C is the boundary of the region given by x = 0, y = 0, x + y = 1.

Part C

Answer any TWO question

19. (a) Find the Fourier series expansion of the periodic function f(x) of the period 4 defined by $f(x) = \begin{cases} 1+x & -2 \le x \le 0\\ 1-x & 0 \le x \le 2 \end{cases}$. Hence deduce that $\sum_{1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$.

- (b) Find a Fourier series to represent x^2 in the interval (-l, l). (12+8)
- 20. (a) Solve the differential equation $x \frac{dy}{dx} + y = x^3 y^6$. (b) Solve $(D^2 - 6D + 25)y = e^{2x} + \sin x + x$. (10+10)

 $(2 \times 20 = 40)$

 $(5\times8=40)$

Max.: 100 Marks

 $(10 \times 2 = 20)$

x 20 - 40)

21. (a) Solve
$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} - 5y = 5$$
 given that $y = 0, \frac{dy}{dt} = 2$ when $t = 0$.
(b) Using convolution theorem find $L^{-1}\left[\frac{s}{(s^2+a^2)^2}\right]$. (15+5)

22. (a) Verify Gauss Divergence theorem for $\vec{F} = 4xz\vec{\imath} - y^2\vec{\jmath} + yz\vec{k}$ over the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. (b) If $\vec{F} = x^2y\vec{\imath} + y^2z\vec{\jmath} + z^2x\vec{k}$, then find $curl (curl\vec{F})$. (15+5)

#########