LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **STATISTICS**

FOURTH SEMESTER – APRIL 2022

UMT 4403 – MATHEMATICS FOR STATISTICS - II

 Date: 27-06-2022
 Dept. No.
 Max. : 100 Marks

 Time: 09:00 AM - 12:00 NOON
 Max. : 100 Marks

Part A

Answer ALL questions

- 1. Define monotone sequences.
- 2. Define greatest lower bound for a set and give an example.
- 3. What do you mean by a series of real numbers dominated by another series of real numbers?
- 4. State D'Alembert's ratio test.
- 5. Define right-hand limit of f at c, give an example.
- 6. Define strictly increasing and strictly decreasing functions.
- 7. Using the definition of differentiation, find the derivative of $f(x) = x^3$.
- 8. State Fundamental Theorem of Calculus.
- 9. Define sets of measure zero.
- 10. Using the properties of Riemann integral, evaluate $\int_0^1 (2x^2 3x + 5) dx$.

Part B

Answer any FIVE questions

$(5 \times 8 = 40)$

(4+4)

 $(10 \times 2 = 20)$

- 11. If the sequence of real numbers $\{s_n\}_{n=1}^{\infty}$ is convergent to L, then prove that $\{s_n\}_{n=1}^{\infty}$ cannot also converge to a limit distinct from L.
- 12. (i) Prove that $\lim_{n \to \infty} \frac{2n^3 + 5n}{4n^3 + n^2} = 2$.
 - (ii) Prove that the series $\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)$ is divergent.
- 13. If $\sum_{n=1}^{\infty} a_n$ is a convergent series, then prove that $\lim_{n\to\infty} a_n = 0$.
- 14. State and prove Comparison test for absolute convergence.
- 15. Write briefly about the application of continuous function in Probability Theory and Statistics.
- 16. Prove that every differentiable function is continuous.
- 17. Let *f* be a continuous real-valued function on the closed bounded interval [a, b]. If the maximum value for *f* attained at *c* where a < x < b, and if f'(c) exists, then prove that f'(c) = 0.
- 18. If $f \in \mathcal{R}[a, b]$, then prove that $|f| \in \mathcal{R}[a, b]$ and $\left|\int_{a}^{b} f\right| \leq \int_{a}^{b} |f|$.

Part C

Answer any TWO questions

19. (a) For any three sets A, B and C, prove that $(A \cup B) \cup C = A \cup (B \cup C)$ and $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$.

(b) If $\{s_n\}_{n=1}^{\infty}$ and $\{t_n\}_{n=1}^{\infty}$ are sequences of real numbers converges to *L* and *M* respectively, then prove the following: $(i)\lim_{n\to\infty}(s_n+t_n) = L + M$ (*ii*) $\lim_{n\to\infty}(s_nt_n) = LM$ (*iii*) $\lim_{n\to\infty}(s_n^2) = L^2$.

20. (a) Using D'Alembert's ratio test, test the convergence of the series $\sum_{n=1}^{\infty} \left(\frac{x^n}{n}\right)$.

(b) Prove that the sum, difference and product of continuous functions are continuous. (8+12)21. State and prove Taylor's Theorem.

22. Suppose that f and g are in $\Re[a, b]$ then prove that the function f + g is in $\Re[a, b]$ and $\int_a^b (f + g) df = 0$.

 $g) = \int_a^b f + \int_a^b g.$

#############

$(2 \times 20 = 40)$

(8+12)