LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FOURTH SEMESTER - APRIL 2022
UMT 4501 - REAL ANALYSIS-I

Date: 16-06-2022
Time: 09:00 AM - 12:00 NOON

PART - A

Answer ALL the Questions

$(10 \times 2=20)$

1. Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ be functions. Show that if go f is injective then f is injective.
2. State principle of Mathematical Induction.
3. Define rational and irrational real numbers.
4. If a, b are real numbers show that $|a b|=|a||b|$.
5. Define supremum and infimum of a non empty subset of real numbers.
6. State completeness property of real numbers.
7. What is meant by Fibonacci sequence?
8. Give an example of a bounded sequence which is not convergent.
9. State Comparison Test for convergence of real sequences.
10. When do you say that a series of real numbers is conditionally convergent?
PART - B

Answer any FIVE Questions

11. For each $\mathrm{n} \in \mathrm{N}$ show that $\mathbf{1}^{2}+\mathbf{2}^{2}+\cdots n^{2}=\frac{n(n+1)(2 n+1)}{6}$.
12. Show that set of all rational numbers is denumerable.
13. Show that there does not exist a rational number r such that $\boldsymbol{r}^{2}=2$.
14. Let $\mathrm{a} \geq 0$ and $\mathrm{b} \geq 0$, show that $\mathrm{a}<\mathrm{b} \Leftrightarrow \boldsymbol{a}^{2}<\boldsymbol{b}^{2} \Leftrightarrow \sqrt{\boldsymbol{a}}<\sqrt{\boldsymbol{b}}$.
15. State and prove Archimedean Property.
16. State and prove nested intervals property.
17. Show that the series $\sum_{n=1}^{\infty} \frac{1}{n!}$ is convergent.
18. Let $\mathrm{X}=\left(\mathrm{x}_{\mathrm{n}}\right)$ be a sequence of real numbers and let $\mathrm{m} \in \boldsymbol{N}$. Show that the sequence $X_{m}=\left(x_{m+n}: n \in N\right)$ converges if and only if X converges.

PART - C

Answer any TWO Questions

19. (a) Prove that $n<2^{n}$ for all $n \in N$.
(b) Show that the following statements are equivalent:
(i) S is a countable set
(ii) There exists a surjection of N into S .
(iii) There exists an injection of S into N .
20. (a) Show that for positive real numbers a and $b, \sqrt{\boldsymbol{a} \boldsymbol{b}} \leq \frac{\boldsymbol{a}+\boldsymbol{b}}{2}$.
(b) If a and b are real numbers show that $||\boldsymbol{a}|-|\boldsymbol{b}|| \leq|\boldsymbol{a}-\boldsymbol{b}|$.
(10+10)

21 (a) If S is a subset of \mathbb{R} that contains at least two points and has the property if $x, y \in S$ and $\mathrm{x}<\mathrm{y}$ then $[\mathrm{x}, \mathrm{y}] \subseteq S$, show that S is an interval.
(b) Show that $[0,1]$ is not countable.
(10+10)
22. (a) If $\mathrm{a}>0$, show that $\lim \left(\frac{\mathbf{1}}{\mathbf{1 + n a}}\right)=0$.
(b) Show that the series $\sum_{\boldsymbol{n}=\boldsymbol{1}}^{\infty} \boldsymbol{a}_{\boldsymbol{n}} \boldsymbol{\operatorname { c o s }} \boldsymbol{n} \boldsymbol{x}$ converges if $\left(\mathrm{a}_{\mathrm{n}}\right)$ is decreasing with $\lim \left(a_{n}\right)=0$ and $x \neq 2 k \pi$.

