LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FOURTH SEMESTER - APRIL 2022

UMT 4601 - COMBINATORICS

Date: 23-06-2022
Dept. No. \square

PART - A

Answer ALL Questions:

(10 $\times 2=20$)

1. Find $f(n, k)$ where $n=4$ and $k=2$. [using recurrence relation].
2. How many different binary sequences of length 10 containing exactly 5 zeros?
3. Tom has 75 books but enough room on his book shelf for only 20 . In how many ways can he fill his shelf?
4. A binary sequence of length n is a string of n digits each of which is 0 or 1 . How many such sequences are there?
5. Construct 2 different 5×5 Latin square which have the same first row
6. 10 people meet and form 5 pairs. How many ways their pairs can obtain?
7. When a path or trail is said to be closed?
8. Write any one possible derangements of 12345 .
9. When a board is said to have a forbidden position?
10. Find the rook polynomial of $n-$ non intersecting 2×2 blocks.
PART - B

Answer any FIVE Questions.

11. Suppose that $t(n, n-1)=1$ and $(n-k-1) t(n, k)=k(n-1) t(n, k+1)$ for each $k<n-1$. Show that $t(n, k)=\frac{(n-1)^{n-k-1}(n-2)!}{(k-1)!(n-k-1)!}$.
12. If a football league of n teams, each team plays each other twice. The number of games played is therefore $2 C$, where C is the number of ways choosing two objects from n given objects. Prove that $C=(n-1)+(n-2)+$ $\ldots \ldots+2+1=\frac{n(n-1)}{2}$ and deduce the number of games played in a league of 22 teams.
13. (a) In how many ways can a 5 -letter word be formed from an alphabet of 26 letters.
i. if reputation are allowed?
ii. if reputation are not allowed?
(b) Explain and derive unordered selection.
14. (a) How many different necklaces can be designed from n colour, using one bead of each colour?
(b) Show that $\binom{7}{4}=\binom{6}{3}+\binom{6}{4}$.
15. Find the optimal assignment to the following problem:

	Man					
		A	Ab	C	C	
	A	6	8	2	7	
	B	5	8	13	9	
	C	2	7	8	9	
	D	4	11	7	10	

16. A n digit integer sequence are to be formed using only the integers $0,1,2,3, \ldots$.
a. How many n digit sequences are there?
b. How many n -digit sequences have an odd number of zeros?
17. Find the general formula for U_{n}, the number of different rooted trees.
18. Given a chessboard C, choose any square of C and let D denote the board obtained by deleting from C every square in the same row or column at the chosen square (including the chosen square itself). Let E denote the board obtained from C by deleting only the chosen square. Then prove that $R(x, C)=x R(x, D)+R(x, E)$.
PART - C

Answer any TWO Questions.

$$
(2 \times 20=40)
$$

19. (a) Suppose that each of k-indistinguishable golf balls have to be colored with any one of n colours using binomial theorem (generating function) approach. Find out how many different colouring are possible and hence deduce the case $k=4$ and $n=9$.
(b) Explain ordered selection and evaluate the following: (i) $p(7,4)$, (ii) $p(9,5)$.
$(12+8)$
20. (a) Let n be a positive integer. Show that if $(1+x)^{n}$ is expanded as a sum of powers on n, the coefficient of x^{r} is $\binom{n}{r}$.
(b) Find a_{n} if $a_{n}=4 a_{n-1}+4 a_{n-2}-16 a_{n-3}, a_{1}=8, a_{2}=4, a_{3}=24$.
21. (a) Find the value of k_{2} given, $\left(\frac{\sqrt{5}+1}{2 \sqrt{5}}\right)\left(\frac{1+\sqrt{5}}{2}\right)+k_{2}\left(\frac{1-\sqrt{5}}{2}\right)=1$.
(b) State and prove Marriage Theorem.
22. (a) Find the rook polynomial of the board

(b) Derive $a_{n}=n!\left\{1-\frac{1}{1!}+\frac{1}{2!}-\cdots+(-1)^{n} \frac{1}{n!}\right\}$ by using inclusion and exclusion principle.

@@@@@@@

