LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034		
B.Sc. DEGREE EXAMINATION – MATHEMATICS		
FIFTH SEMESTER – APRIL 2022		
UMT 5501 – REAL ANALYSIS - II		
Date: 15-06-2022 Dept. No. Time: 09:00 AM - 12:00 NOON	Max. : 100 Marks	
Part - A		
Answer ALL questions	(10 x 2 = 20)	
•	`	
1. Using the definition of limit, prove that $\lim_{x\to c} x = c$.		
2. Evaluate: $\lim_{x \to 2} \left(\frac{x^3 - 7x}{4x^2 - 5x} \right)$.		
3. Define continuity of a function.		
4. Write the conditions for Lipschitz function.		
5. Using the definition of differentiation, find the derivative of $f(x) = x^2$.		
6. Using L'Hospital's rule, evaluate $\lim_{x\to 0} \left(\frac{1-\cos x}{x^2}\right)$.		
7. Define tagged partition.		
8. Define Reimann integrable function.		
9. Define compact set.		
10. What is meant by Cantor set?		
Part - B		
Answer any FIVE questions	$(5 \times 8 = 40)$	
11. If <i>p</i> and <i>q</i> are polynomial functions on \mathbb{R} and if $q(c) \neq 0$, then prove that $\lim_{x \to c} \frac{p(x)}{q(x)} = \frac{p(c)}{q(c)}$.		
12. Using squeeze theorem of limit, prove that $\lim_{x\to 0} \left(\frac{\cos x - 1}{x}\right) = 0.$		
13. State and prove Rolle's theorem.		
14. Let $A \subseteq \mathbb{R}$, let f and g be functions on A to R and let $b \in \mathbb{R}$. If f and g are continuous at c, then		
prove that $f + g$, fg and bf are also continuous at c .		
15. State and prove the location of roots theorem.		
16. If $f:[a,b] \to \mathbb{R}$ is monotone on [a, b], then prove that $f \in \mathcal{R}[a,b]$.		

- 17. State and prove Cauchy Criterion for integration.
- 18. Prove that the union of an arbitrary collection of open subsets in \mathbb{R} is open in \mathbb{R} .

Part - C	
Answer any TWO questions	$(2 \times 20 = 40)$
19. State and prove sequential criterion theorem for limits.	
20. State and prove the Maximum-Minimum theorem.	
21. State and prove Taylor's theorem.	
22. (a) Prove that a subset of \mathbb{R} is closed if and only if it contains all its cluster points.	
(b) State and prove fundamental theorem of Calculus.	(10+10)

@@@@@@@@