LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIFTH SEMESTER - APRIL 2022
UMT 5502 - LINEAR ALGEBRA

Date: 16-06-2022
Dept. No.
Max. : 100 Marks
Time: 09:00 AM - 12:00 NOON

PART - A

Answer ALL the Questions:

1. Define basis of a vector space.
2. Write short notes on linearly independent vectors.
3. Find norm of $(3,-4,2) \in R^{3}$ under usual metric.
4. Define an inner product space.
5. State the triangle inequality for inner product space.
6. Define linear transformation.
7. What is a characteristic vector?
8. How does matrix get its structure?
9. Give brief notes on invariant subspace.
10. Distinguish unitary and normal transformations.

PART - B

Answer any FIVE of the following:
11. Express $(1,-2,5)$ as a linear combination of the vectors $(1,1,1),(1,2,3),(2,-2,1)$ in R^{3}.
12. State and prove Schwarz inequality.
13. Prove that $T: R^{2} \rightarrow R^{2}$ defined by $(a+b) T=(a+b, a)$ is a vector space homomorphism.
14. Prove that $T \in A(V)$ is invertible if and only of T maps V onto V.
15. Let $T \in A(V)$ and $\lambda \in F$. Then prove that λ is an eigenvalue of T if and only if $\lambda I-T$ is singular.
16. If V is a finite dimensional vector space over F, show that $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial of T is non-zero.
17. If $T \in A(V)$ is Hermitian, then prove that all its eigen values are real.
18. If $T \in A(V)$ such that $(v T, v)=0 \forall v \in V$, then prove that $T=0$.

PART - C

Answer any TWO of the following:
19. a) If V is a vector space of finite dimension and is the direct sum of its subspaces U and W , then prove
that $\operatorname{dim} \mathrm{V}=\operatorname{dim} \mathrm{U}+\operatorname{dim} \mathrm{W}$.
b) If V is a finite dimensional vector space over F , then prove that $T \in A(V)$ is regular if and only if T maps V onto V .
20. If U and V are vector spaces of dimensions m and n respectively over F, prove that $\operatorname{Hom}(U, V)$ is of dimension $m n$.
21. Apply the Gram - Schmidt orthonormalization process to the vectors $(1,0,1),(1,3,1)$ and $(3,2,1)$ to obtain an orthonormal basis for $\mathrm{R}^{3 .}$
22. a) Let V be a vector space of all polynomials of degree less than or equal to 3 . Let D be the differential operator defined by $\left(a+b x+c x^{2}+d x^{3}\right) D=b+2 c x+3 d x^{2}$. Determine the matrix of D in the basis $1, x, x^{2}, x^{3}$.
b) If $(v T, v T)=(v, v) \forall v \in V$ then prove that T is unitary.

