LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIFTH SEMESTER - APRIL 2022
UMT 5503 - DISCRETE MATHEMATICS

Date: 17-06-2022
Time: 09:00 AM - 12:00 NOON
PART - A
Answer ALL questions
$(10 \times 2=20)$

1. Show that $P \wedge Q$ implies $(7 P \rightarrow Q)$.
2. Define monoid with an example.
3. Prove that in a lattice if $a \leq b$ then $a \oplus b=b$.
4. How do you construct the direct product of two Boolean algebras?
5. Write the following statement in symbolic form, 'Moscow is neither a country nor a state'.
6. What is an idempotent element?
7. When do you say an element to be join-irreducible?
8. State the rules of inference.
9. Discuss the conditions for a Boolean expression to be symmetric.
10. Illustrate substitution instance with an example.

> PART - B

Answer any FIVE questions

11. Prove that the set of all functions from X to X forms a semigroup under the operation of composition of mappings. Also verify whether it forms a monoid.
12. Construct the truth table of the following statements:
(a) $(Q \wedge(P \rightarrow Q)) \rightarrow P$
(b) $\urcorner(P \wedge Q) \rightleftarrows(\urcorner P \vee Q)$.
13. (a) Show that $P(x) \wedge(x) Q(x) \Rightarrow(\exists x)(P(x) \wedge Q(x))$.
(b) Prove that the conclusion $R \vee S$ follows from the premises $(C \vee D) \rightarrow 7 H$, $7 \mathrm{H} \rightarrow(\mathrm{A} \wedge 7 \mathrm{~B})$ and $(\mathrm{A} \wedge 7 \mathrm{~B}) \rightarrow(\mathrm{R} \vee \mathrm{S})$ using equivalence laws.
14. Show that in a complemented distributive lattice $a \leq b \Leftrightarrow a * b^{\prime}=0 \Leftrightarrow a^{\prime} \oplus b=1 \Leftrightarrow b^{\prime} \leq a^{\prime}$.
15. Prove that the quotient set $(S / R, \oplus)$ is a semigroup, where R is congruence relation defined on a semigroup ($\mathrm{S},{ }^{*}$). Also verify whether there exists a natural homomorphism from ($\mathrm{S},{ }^{*}$) onto $(S / R, \oplus$).
16. Show that $P \rightarrow Q, P \rightarrow R, Q \rightarrow\rceil R$ and P are inconsistent.
17. State and prove isotonicity property of Lattices.
18. Reduce the following expressions where + represents the operation in Boolean algebra.
i. $a b+a b c+a b c^{\prime}+a^{\prime} b c$.
ii. $\quad a(a+c)=a a+a c$.

PART - C

Answer any TWO questions
19. (a) Express the following Boolean expressions in an equivalent sum of the product of canonical forms in three variables x_{1}, x_{2} and x_{3} (i) $x_{1} * x_{2}$. (ii) $x_{1} \oplus x_{2}$. (iii) $\left(x_{1} \oplus x_{2}\right)^{\prime} * x_{3}$.
(b) Obtain the principal disjunctive and conjunctive normal forms of
$(\mathrm{Q} \rightarrow \mathrm{P}) \wedge(7 \mathrm{P} \wedge \mathrm{Q})$.
$(10+10)$
20. (a) What is a Boolean algebra? List down its various properties.
(b) Show that the set $N=\{0,1,2, .$.$\} is a semigroup under the operation defined by$ $x * y=\max \{x, y\}$. Also check whether it forms a monoid.
21. (a) Let X be a set containing n elements, let X^{*} denote the free semigroup generated by X, and let (S, \oplus) be any other semigroup generated by any n generators then show that there exists a homomorphism $g: X^{*} \rightarrow S$.
(b) Using truth tables verify whether
$(P \rightarrow(Q \rightarrow R)) \Leftrightarrow(P \rightarrow(\urcorner Q \vee \mathrm{R})) \Leftrightarrow((P \wedge Q) \rightarrow R)$.
22. (a) Prove that $\left(S_{42}, D\right)$ the set of all divisors of 42 and D denotes the relation of division is a complemented lattice. Also evaluate the same for $\left(S_{n}, D\right) ; n=12,8$.
(b) Verify using rules of inference whether $S \vee R$ is tautologically implied by
$(P \vee Q) \wedge(P \rightarrow R) \wedge(Q \rightarrow S)$.
$(10+10)$

