LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

1

UMT 6501 - COMPLEX ANALYSIS

Date: 15-06-2022
Dept. No. \square
Max. : 100 Marks
Time: 01:00 PM - 04:00 PM

PART - A

Answer ALL Questions:

(10 X $2=20$ Marks $)$

1. Let $f(z)=i z / 2$ in the open disc $|z|<1$. Show that $\lim _{z \rightarrow 1} f(z)=\frac{i}{2}$
2. Verify the Cauchy - Riemann equations for the function $f(z)=e^{z}$.
3. Show that the function $f(z)=\operatorname{Re} z$ is nowhere differentiable.
4. Let a function $f(z)$ be analytic in a domain D. Prove that if $\overline{f(z)}$ be analytic in D, then $f(z)$ must be a constant.
5. State Maximum Moduli Principle.
6. Define the convergence of sequences.
7. Find the singular points of the following function: $\frac{z+1}{z^{3}\left(z^{2}+1\right)}$.
8. State Cauchy's Residue theorem.
9. Define a linear fractional transformation.
10. When do you say that a function f is conformal at z_{0} ?

PART - B

Answer Any FIVE Questions:

(5 X 8 = 40 Marks)
11. Prove that Cauchy-Riemann equations are satisfied by a non-differentiable function $f(z)=\sqrt{|x y|}$ at $z=0$.
12. Determine whether $f^{\prime}(z)$ exists and find its value for $f(z)=\frac{1}{z}$ where $z=r e^{i \theta}$.
13. Prove that $u=2 x-x^{3}+3 x y^{2}$ is harmonic and find its harmonic conjugate. Also find the corresponding analytic function.
14. Let C be the arc of the circle $|z|=2$ from $z=2$ to $z=2 i$ that lies in the first quadrant. Prove that $\left|\int_{C} \frac{d z}{z^{2}+1}\right| \leq \frac{\pi}{3}$.
15. State Liouville's theorem and deduce the Fundamental theorem of algebra.
16. Expand the following function in a Laurent's series in (i) $1<|z|<2$ and (ii) $|z|>2$. $f(z)=\frac{z}{(z-1)(2-z)}$.
17. Find the residue of $\frac{e^{z}}{z^{2}\left(z^{2}+9\right)}$ at its poles.
18. Find the linear fractional transformation which maps $z_{1}=0, z_{2}=-i$ and $z_{3}=-1$ onto the points $w_{1}=i, w_{2}=1$ and $w_{3}=0$.

PART - C

Answer Any TWO Questions:
19. State and prove the necessary and sufficient condition for $f(z)$ to be differentiable at a point.
20. (a) Find the analytic function $f(z)=u+i v$ given that $u-v=e^{z}(\cos y-\sin y)$.
(10 marks)
(b) Let C denote the boundary of the square whose sides lie along the lines $x= \pm 2$ and $y= \pm 2$ where C is described in the positive sense. Evaluate:
(i) $\int_{C} \frac{z d z}{2 z+1}$ and (ii) $\int_{C} \frac{\cos z d z}{z\left(z^{2}+8\right)}$
(10 marks)
21. (a) State and prove Taylor's theorem.
(10 marks)
(b) Using the method of Contour integration, evaluate:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\cos x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)} d x \tag{10marks}
\end{equation*}
$$

22. (a) State and prove Rouche's theorem.
(b) Show that the transformation $w=\frac{5-4 z}{4 z-2}$ maps the unit circle $|z|=1$ onto a circle of radius unity and centre $-\frac{1}{2}$.
