LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

SIXTH SEMESTER - APRIL 2022
UMT 6502 - OPERATIONS RESEARCH

Date: 17-06-2022 \square Max. : 100 Marks
Time: 01:00 PM - 04:00 PM

SECTION-A

Answer All Questions

1. What is surplus variable?
2. Write the standard form of the LPP.
3. Define Basic Feasible Solution
4. What is the advantage of dual simplex method?
5. What is degeneracy in Transportation problem?
6. State any two areas for the application of assignment problem.
7. Solve the game $\left[\begin{array}{ccc}1 & 3 & 1 \\ 0 & -4 & -3 \\ 1 & 5 & -1\end{array}\right]$.
8. Define two person zero sum game.
9. Define dummy activity.
10. Define Free float.

SECTION-B

Answer Any Five Questions

11. Solve the following Linear Programming Problem by Graphical Method.

Minimize $Z=2 x_{1}+x_{2}$
Subject to constraints

$$
\begin{aligned}
& 5 x_{1}+10 x_{2} \leq 50 \\
& x_{1}+x_{2} \geq 1 \\
& x_{1} \leq 4 \\
& x_{1}, x_{2} \geq 0 .
\end{aligned}
$$

and
12. Using dual simplex method to the LPP

Maximize $Z=2 x_{1}+2 x_{2}$
Subject to constraints

$$
\begin{aligned}
& 2 x_{1}+4 x_{2} \geq 1 \\
& x_{1}+2 x_{2} \geq 1 \\
& 2 x_{1}+x_{2} \geq 1 \\
& x_{1}, x_{2} \geq 0 .
\end{aligned}
$$

and
13. Solve the following transportation problem by using North West Corner Rule.

	D	E	F	G	Supply
A	3	7	6	4	5
B	2	4	3	2	2
C	4	3	8	5	3
Demand	3	3	2	2	

14. Solve the following Assignment problem

To						
From		A	B	C	D	
	A	10	25	15	20	
	B	15	30	5	15	
	C	35	20	12	24	
	D	17	25	24	20	

15. Solve the following 2 X 2 game $\left[\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right]$.
16. Construct the project network comprised of activities A to L with the following precedence relationships:
(a) A, B, and C the first activities of the project, can be executed concurrently.
(b) A and B precede D.
(c) B precedes E, F, and H.
(d) F and C precede G .
(e) E and H precede I and J.
(I) C, D, F, and J precede K.
(g) K precedes L.
(h) I, G, and L are the terminal activities of the project.
17. Write the dual of the following primal LPP

$$
\operatorname{Max} Z=x_{1}-3 x_{2}-2 x_{3}
$$

Subject to ` $3 x_{1}-x_{2}+2 x_{3} \leq 7$
$2 x_{1}-4 x_{2} \geq 12$
$-4 x_{1}+3 x_{2}+8 x_{3}=10$
and $x_{1}, x_{2} \geq 0, x_{3}$ is unrestricted.
18. Use dominance Property to solve the following game

Player A

$$
\text { Player B }\left(\begin{array}{lll}
1 & 7 & 2 \\
6 & 2 & 7 \\
5 & 1 & 6
\end{array}\right)
$$

SECTION -C

Answer Any Two Questions:

19. Solve the following Linear Programming Problem by simplex Method.

Maximize $Z=5 x_{1}+4 x_{2}$
Subject to constraints

$$
\begin{aligned}
& 4 x_{1}+5 x_{2} \leq 10 \\
& 3 x_{1}+2 x_{2} \leq 9 \\
& 8 x_{1}+3 x_{2} \leq 12 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

and
20. Use Big-M method to solve the LPP :

Minimize $Z=6 x_{1}+4 x_{2}$
Subject to
and

$$
\begin{gathered}
2 x_{1}+3 x_{2} \leq 30 \\
3 x_{1}+2 x_{2} \leq 24 \\
x_{1}+x_{2} \geq 3 \\
x_{1}, x_{2} \geq 0 .
\end{gathered}
$$

21. Find the optimal solution to the following transportation problem by using Vogel's approximation method.

	A	B	C	D	Available
I	19	30	50	10	7
II	70	30	40	60	9
III	40	8	70	20	18
Requirements	5	8	7	14	

22.(a) A project composed of nine activities whose time estimates are given below:

Jobs	$1-2$	$7-8$	$2-3$	$3-5$	$5-8$	$6-7$	$4-5$	$2-4$	$1-6$
a (days)	3	4	6	5	1	3	3	2	2
m(days)	6	19	12	11	4	9	6	5	5
b(days)	15	28	30	17	7	27	15	8	14

(i) Draw the project
(ii) Calculate the length variance of the critical path.
(b) Use Graphical method in solving the following game.

Player A
Player B $\quad\left(\begin{array}{cccc}2 & 2 & 3 & -2 \\ 4 & 3 & 2 & 6\end{array}\right)$

@@@@@@@

