LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FIRST SEMESTER – **NOVEMBER 2022**

PMT1MC01 – LINEAR ALGEBRA

Date: 23-11-2022

Dept. No.

Max.: 100 Marks

Time: 01:00 PM - 04:00 PM

εμι.	110.	
-		

SECTION - A Answer ALL the Questions Answer the following $(5 \times 1 = 5)$ 1 CO1 Define diagonalizable operator. K1 a) Write the eigen values of a projection operator. K1 CO1 **b**) Give an example for a nilpotent operator. K1 CO1 c) Write an inner product on R^3 d) K1 CO1 Define a linear functional. K1 CO1 e) **Multiple Choice Questions** $(5 \times 1 = 5)$ 2 Let A be a real nilpotent matrix of order 3. Then the eigen values of A are K2 CO1 a) a) 0, 0, 1 b) 0, 0, 0 c) 1, 1, 1 d) 1, 2, 3 A linear operator E with the property $E^2 = E$ called b) K2 CO1 a) idempotent. b) nilpotent c) projection d) annihilator A linear operator has distinct eigen values then it is K2 CO1 c) a) not diagonalizable b) diagonalizable c) nilpotent d) zero matrix Trace of a Elementary Jordan matrix of order 4×4 with characteristic value is 2 K2 d) CO1 a) 2 b) 4 c) 6 d) 8 In $R^2(\alpha|\beta) = ax_1y_1 + bx_2y_2$ where $\alpha = (x_1, x_2), \beta = (y_1, xy_2)$ is an inner product if K2 CO1 e) a) a = 1, b = -2 b) a = 6, b = 0 c) a = 4, b = 5d) For any real a and b. **SECTION - B** Answer any THREE of the following. $(3 \times 10 = 30)$ Write about the matrix of a projection operator. K3 CO2 3 Let V be a finite-dimensional vector space over the field F and let T be a linear 4 operator on V. Then prove that T is triangulable if and only if the minimal K3 CO2 polynomial for T is a product of linear polynomials over F. Write any four properties of nilpotent operators. 5 K3 CO2 Let V be a finite-dimensional vector space. Let W_1, \ldots, W_k be subspaces of V and 6 let $W = W_1 + \ldots + W_k$. Show that the following are equivalent. W_1, \ldots, W_k are independent. (i) K3 CO2 For each j, $2 \le j \le k$, $W_j \cap (W_{l+1} + ... + W_{j-l}) = \{0\}$. (ii) If β_i is an ordered basis for W_i , $1 \le i \le k$, then the sequence (iii) $\beta = (\beta_1, \ldots, \beta_k)$ is an ordered basis for W. Write any four properties of an adjoint operator. 7 K3 CO₂ **SECTION - C** Answer any TWO of the following. $(2 \times 12.5 = 25)$ 1 1 11 K4 Diagonalize the matrix A =2 CO3 0 1 8 3 4 9 State and prove primary decomposition theorem. K4 CO3

10	Let <i>T</i> be a linear operator on the finite-dimensional vector space <i>V</i> over the field <i>F</i> . Suppose that the minimal polynomial for <i>T</i> decomposes over <i>F</i> into a product of linear polynomials. Then prove that there is a diagonalizable operator <i>D</i> on <i>V</i> and a nilpotent operator <i>N</i> on <i>V</i> such that (i) $T = D + N$; (ii) $DN=ND$ Also show that the he diagonalizable operator <i>D</i> and the nilpotent operator <i>N</i> are	K4	CO3	
	uniquely determined by (1) and (11) and each of them is a polynomial in <i>T</i> .			
11	Let T be a linear operator on R^2 which is represented by the matrix $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$. Let $\alpha = (0, 1)$. Show that $R^2 \neq Z(\alpha; T)$. Also prove that there is no non-zero β in R^2 with $Z(\beta; T)$ is disjoint from $Z(\alpha; T)$.	K4	CO3	
	SECTION - D			
	Answer any ONE of the following.		(1 x 15 = 15)	
12	If U is a linear operator on the finite dimensional space W , then U has a cyclic vector if and only if there is some ordered basis for W in which U is represented by the companion matrix of the minimal polynomial for U . Discuss about the rational form of a nilpotent transform.	K5	CO4	
13	Prove the existence of cyclic decomposition theorem. Construct a linear transform and its cyclic vector on R^3	K5	CO4	
	SECTION - E			
	Answer any ONE of the following.		= 20)	
14	Let F be a field and let B be an n x n matrix over F. Then B is similar over the field F to one and only one matrix which is in rational form. Create a transform and its rational form.	K6	CO5	
15	 a)Let V be a finite-dimensional inner product space, and f a linear functional on V. Then prove that there exists a unique vector β in V such that f(α) = (α β) for all α in V. b)For any linear operator T on a finite-dimensional inner product space V, show that there exists a unique linear operator T* on V such that (Tα β) = (α T*β) for all α, p in V. Construct a non-identity operator T and its adjoint T* on R² 	K6	CO5	

aaaaaaa