LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - NOVEMBER 2022

PMT1MC01 - LINEAR ALGEBRA
Date: 23-11-2022
Time: 01:00 PM - 04:00 PM \square Max. : 100 Marks

SECTION - A			
Answer ALL the Questions			
1	Answer the following		= 5)
a)	Define diagonalizable operator.	K1	CO1
b)	Write the eigen values of a projection operator.	K1	CO1
c)	Give an example for a nilpotent operator.	K1	CO1
d)	Write an inner product on R^{3}	K1	CO1
e)	Define a linear functional.	K1	CO1
2	Multiple Choice Questions	(5 x	= 5)
a)	Let A be a real nilpotent matrix of order 3. Then the eigen values of A are a) $0,0,1$ b) $0,0,0$ c) $1,1,1$ d) 1, 2, 3	K2	CO1
b)	A linear operator E with the property $E^{2}=E$ called a) idempotent. b) nilpotent c) projection d) annihilator	K2	CO1
c)	A linear operator has distinct eigen values then it is a) not diagonalizable b) diagonalizable c) nilpotent d) zero matrix	K2	CO1
d)	Trace of a Elementary Jordan matrix of order 4×4 with characteristic value is 2 a) 2 b) 4 c) 6 d) 8	K2	CO1
e)	In $R^{2}(\alpha \mid \beta)=a x_{1} y_{1}+b x_{2} y_{2}$ where $\alpha=\left(x_{1}, x_{2}\right), \beta=\left(y_{1}, x y_{2}\right)$ is an inner product if a) $a=1, b=-2$ b) $a=6, b=0$ c) $a=4, b=5$ d) For any real a and b.	K2	CO1
SECTION - B			
	Answer any THREE of the following.	($\mathbf{3 \times 1 0}=\mathbf{3 0}$)	
3	Write about the matrix of a projection operator.	K3	CO 2
4	Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V. Then prove that T is triangulable if and only if the minimal polynomial for T is a product of linear polynomials over F.	K3	CO 2
5	Write any four properties of nilpotent operators.	K3	CO 2
6	Let V be a finite-dimensional vector space. Let W_{l}, \ldots, W_{k} be subspaces of V and let $W=W_{l}+\ldots+W_{k}$. Show that the following are equivalent. (i) W_{l}, \ldots, W_{k} are independent. (ii) For each $\mathrm{j}, 2 \leq \mathrm{j} \leq \mathrm{k}, W_{j} \cap\left(W_{I}+\ldots+W_{j-1}\right)=\{0\}$. (iii) If β_{i} is an ordered basis for $W_{i}, 1 \leq \mathrm{i} \leq \mathrm{k}$, then the sequence $\beta=\left(\beta_{l}, \ldots, \beta_{k}\right)$ is an ordered basis for W.	K3	CO 2
7	Write any four properties of an adjoint operator.	K3	CO 2
SECTION - C			
Answer any TWO of the following.		($2 \times 12.5=25$)	
8	Diagonalize the matrix $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 2 & 1 \\ -4 & 4 & 3\end{array}\right]$	K4	CO3
9	State and prove primary decomposition theorem.	K4	CO 3

10 Let T be a linear operator on the finite-dimensional vector space V over the field F. Suppose that the minimal polynomial for T decomposes over F into a product of linear polynomials. Then prove that there is a diagonalizable operator D on V and a nilpotent operator N on V such that
(i) $T=D+N$;
(ii) $D N=N D$

Also show that the he diagonalizable operator D and the nilpotent operator N are uniquely determined by (i) and (ii) and each of them is a polynomial in T.

11 Let T be a linear operator on R^{2} which is represented by the matrix $\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$. Let $\alpha=(0,1)$. Show that $R^{2} \neq \mathrm{Z}(\alpha ; \mathrm{T})$. Also prove that there is no non-zero β in R^{2} with $\mathrm{Z}(\beta ; \mathrm{T})$ is disjoint from $\mathrm{Z}(\alpha ; \mathrm{T})$.

SECTION - D

Answer any ONE of the following.

$(1 \times 15=15)$

12	If U is a linear operator on the finite dimensional space W, then U has a cyclic vector if and only if there is some ordered basis for W in which U is represented by the companion matrix of the minimal polynomial for U. Discuss about the rational form of a nilpotent transform.	K 5	CO 4
13	Prove the existence of cyclic decomposition theorem. Construct a linear transform and its cyclic vector on R^{3}	K 5	CO 4

SECTION - E

Answer any ONE of the following.
14 Let F be a field and let B be an nx n matrix over F . Then B is similar over the field F to one and only one matrix which is in rational form. Create a transform and its rational form.

15 a)Let V be a finite-dimensional inner product space, and fa linear functional on V. Then prove that there exists a unique vector β in V such that $f(\alpha)=(\alpha \mid \beta)$ for all α in V.
b)For any linear operator T on a finite-dimensional inner product space V, show that there exists a unique linear operator T^{*} on V such that $(T \alpha \mid \beta)=\left(\alpha \mid T^{*} \beta\right)$ for all α, β in V. Construct a non-identity operator T and its adjoint T^{*} on R^{2}

@@@@@@

