LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER – **NOVEMBER 2022**

PMT1MC02 – REAL ANALYSIS-I

Date: 25-11-2022 Dept. No. Time: 01:00 PM - 04:00 PM

Tim	e: 01:00 PM - 04:00 PM						
SECTION A							
Answ	er ALL the Questions						
1.	Answer the following (5 Marks)	x 1	= 5				
a)	Give an example of an open set.	K1	CO1				
b)	Define derivates of higher order.	K1	CO1				
c)	Define Refinement of partition of a set.	K1	CO1				
d)	State any two properties of definite integral.	K1	CO1				
e)	Give an example of a function which is continuous but not uniformly continuous.	K1	CO1				
2.	Choose the correct answer for the following (5 x	1 = 5 M	Marks)				
a)	The set of all complex numbers in R^2 is(i) closed(ii) open(iii) perfect(iv) bounded	К2	CO1				
b)	The set of points where $f(x) = \frac{x}{1+ x }$ is differentiable at (i) $(-\infty, 1) \downarrow \downarrow (1, \infty)$ (ii) $(-\infty, \infty)$ (iv) $(-\infty, 0)$	К2	CO1				
c)	Let $f(x) = x, 0 \le x \le 3$ and let $P = \{0,1,2,3\}$ be a partition of $[0,3]$, then the value of $U(P, f)$ is (i)1 (ii)2 (iii) 3 (iv) 6	К2	CO1				
d)	If $f(x) = x, 0 \le x \le 1$ then the value of $\int_0^1 x dx$, where $f \in R[0,1]$ is (i)0 (ii) $\frac{1}{2}$ (iii) 1 (iv) $-\frac{1}{2}$	К2	CO1				
e)	$\begin{array}{ll} \lim_{n \to \infty} 3 + (-1)^n \text{ is} \\ \text{(i) divergent} & \text{(ii) convergent} & \text{(iii) oscillatory} & \text{(iv) harmonic} \end{array}$	К2	CO1				
SECTION B							
Answ Mark	er any THREE of the following: (3 x s)	10	= 30				
3.	 a) Are compact subsets of metric space closed? If yes prove it. b) Prove that a set <i>E</i> is open if and only if its complement is closed. (5+5) 	- K3	CO2				
4.	Suppose f is continuous on $[a, b]$, $f^{-1}(x)$ exists at some point $x \in [a, b]$ is defined on the interval I which contains the range of f, and g is differentiable at the point f(x). If $h(t) = g(f(t))$ then h is differentiable at x and $h'(x) = g'(f(x))f'(x)$.	К3	CO2				
5.	If $f \in \mathcal{R}(\alpha)$ on $[a, b]$ if and only if for every $\epsilon > 0$ there exists a partition P such that $U(P, f, \alpha) - L(P, f, \alpha) < \epsilon$.	К3	CO2				
6.	Is limit of the integral equal to integral of the limit for i) $f_n(x) = \frac{\sin nx}{\sqrt{n}}$ ii)	К3	CO2				

Max. : 100 Marks

	$f_n(x)$	$x) = n^2 x (1 - x^2)^n ?$		
7.	If U	P^* is a refinement of P , then prove that $L(P, f, \alpha) \leq L(P^*, f, \alpha)$ and $P^*, f, \alpha) \leq U(P, f, \alpha)$.	К3	CO2
		SECTION C		
Answ	ver an	ay TWO of the following: (2 x	12.5	= 2
Mark	(S)	$p_{acc} f \rightarrow f_{acc} f_{acc} = 0$ and $p_{acc} f_{acc} = 0$ and $p_{acc} = 0$ and $p_{acc} = 0$		
0.	and lim	suppose $f_n \to f$ uniformly on a set <i>E</i> in a metric space. Let <i>x</i> be e limit point of <i>E</i> suppose that $\lim_{t\to x} f_n(t) = A_n$, then prove that $\{A_n\}$ converges and $\lim_{t\to x} f_n(t) = \lim_{n\to\infty} A_n$ implies $\lim_{t\to x} \lim_{n\to\infty} f_n(t) = \lim_{n\to\infty} \lim_{t\to x} f_n(t)$.	K4	CO3
9.	Provif and $x \epsilon$	ve that the sequence of functions $\{f_n\}$, defined on <i>E</i> , converges uniformly on <i>E</i> nd only if for every $\epsilon > 0$ there exists an integer <i>N</i> such that $m \ge N, n \ge N$, <i>E</i> implies that $ f_n(x) - f_m(x) \le \epsilon$.	K4	CO3
10.	Brie	efly explain existence of best approximation.	K4	CO3
11.	Ass	ume α increasing monotonically and $\alpha' \in \mathcal{R}$ on $[a, b]$, let f be a bounded real		
	fund	ction on $[a, b]$. Then prove that $f \in \mathcal{R}$ if and only if $f \alpha' \in \mathcal{R}$ and $\int_a^b f d\alpha = f(x)\alpha'(x) dx$.	K4	CO3
	Ja	SECTION D		
Answ	ver an	ay ONE of the following: (1 x 15 =	15 M	arks)
12.	a)	If f is a continuous mapping of a compact metric space X into a metric space Y then, prove that f is uniformly continuous on X .	К5	CO4
	b)	Develop and justify sets for the following conditions i) closed, open, perfect, and not bounded. ii) closed, not open, perfect, and bounded. iii) closed, not open, not perfect and bounded. iv) closed, not open, not perfect, and not bounded. v) closed, open, perfect, and not bounded. (10+5)	К5	CO4
13.	a)	Prove the integral formula of integration by parts using Reimann-Stieltjes integral.	К5	CO4
	b)	Prove that a mapping f of a metric space X into a metric space Y is continuous on X if and only if $f^{-1}(V)$ is open in X for every open set V in Y . (7+8)	K5	CO4
		SECTION E		
Ansv	wer a	ny ONE of the following (1 x 20 =	= 20 M	larks
14.	Dise com	cuss whether a uniformly continuous polynomial P_n is real for a continuous splex function f in $[a, b]$.	K6	CO
15.	What	at is the condition for Lagrange's mean value theorem and Rolle's theorem n generalized mean value theorem? Discuss it.	K6	COS