LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

 FIRST SEMESTER - NOVEMBER 2022
PMT1MC03 - ORDINARY DIFFERENTIAL EQUATIONS

Date: 28-11-2022
Time: 01:00 PM - 04:00 PM

Max. : 100 Marks

SECTION A			
Answer ALL the questions			
1	Answer the following. 5)		x $1=$
a)	Describe the second order initial value problem.	K1	CO1
b)	Define linear dependence.	K1	CO1
c)	What is meant by fundamental matrix?	K1	CO1
d)	Define regular singular point.	K1	CO1
e)	Describe the non-oscillatory differential equation.	K1	CO1
2	Choose the correct answer.	($5 \times 1=5$)	
a)	Let $f:\left[t_{0}, \infty\right] \rightarrow[0, \infty]$ be a continuous function and $k>0$ be a constant. If $f(t) \leq$ $k \int_{t_{0}}^{t} f(s) d s, t \geq t_{0}$, then which of the following holds? (a) $f(t)>0$ (b) $f(t)<0$ (c) $f(t)=0$ (d) none of these	K2	CO1
b)	The Wronskian of $1, x$ and x^{2} is (a) 1 (b) -1 (c) 2 (d) -2	K2	CO1
c)	A linear equation $x^{\prime \prime \prime}-6 x^{\prime \prime}+11 x^{\prime}-6 x=0$ is transformed to linear system $x^{\prime}=A x$, where A is (a) $\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & 11 & 6\end{array}\right]$ (b) $\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6\end{array}\right]$ (c) $\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & 11 & -6\end{array}\right]$ (d) $\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & 6\end{array}\right]$	K2	CO1
d)	When p is an integer, $J_{-P}(t)=$ (a) $J_{P}(t)$ (b) $p J_{P}(t)$ (c) $(-1)^{p} J_{P}(t)$ (d) $-J_{P}(t)$	K2	CO1

(a) oscillatory
(b) non-oscillatory
(c) neither
(a) nor (b)
(d) both
(a) and (b)

SECTION B

Answer any THREE of the following.

($\mathbf{3} \times 10=30$)

3	Apply Picard's successive approximation method to find the solution of the equation $x^{\prime}=-x, x(0)=1, t \geq 0$, and verify with analytical method.	K3	CO 2
4	If the Wronskian of two functions x_{1} and x_{2} on I is non-zero for at least one point of I, show that x_{1} and x_{2} are linearly independent. Illustrate to $x_{1}=t^{2}, x_{2}=t\|t\|$ on $I=(-2,2)$.	K3	CO2
5	Consider a linear system $x^{\prime}=A(t) x$ where $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right], A=\left[\begin{array}{ccc}-3 & 1 & 0 \\ 0 & -3 & 1 \\ 0 & 0 & -3\end{array}\right]$. Show that $\Phi(\mathrm{t})=\left[\begin{array}{ccc}e^{-3 t} & t e^{-3 t} & t^{2} e^{-3 t} / 2 \\ 0 & e^{-3 t} & t e^{-3 t} \\ 0 & 0 & e^{-3 t}\end{array}\right]$ is a fundamental matrix.	K3	CO2
6	Solve the equation $x^{\prime \prime}-2 t x^{\prime}+2 x=0$.	K3	CO2
7	Demonstrate the comparison theorem in Sturm's perspective.	K3	CO2

SECTION C

Answer any TWO of the following.

8	Let $b_{1}, b_{2}, \ldots, b_{n}: I \rightarrow \mathbb{R}$ be continuous functions in the n-th order homogeneous differential equation $L(x)=0$. Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ be n linearly independent solutions of $L(x)=0$ on I. Obtain the Wronskian of $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ and discuss the special case $L(x)=x^{\prime \prime \prime}+x^{\prime \prime}+x^{\prime}+x$.	K 4	CO 3
9	Derive the generating function and integral representation of Bessel function.	K 4	CO 3
10	Analyze the solutions of the system $x_{1}^{\prime}=5 x_{1}-2 x_{2}$ and $x_{2}^{\prime}=2 x_{1}+x_{2}$.	K 4	CO 3
11	Explain the Hille-Wintner comparison theorem.	K 4	CO 3

SECTION D

Answer any ONE of the following.

($1 \times 15=15$)
12 Summarize the method of variation of parameters for solving the second order equation $x^{\prime \prime}(t)+b_{1}(t) x^{\prime}(t)+b_{2}(t) x(t)=h(t)$ and implement to the particular case $b_{1}(t)=\frac{-2}{t}, b_{2}(t)=\frac{-2}{t^{2}}$, and $h(t)=t s i n t$.

13 Let $x^{\prime}=A(t) x$ be a linear system where $A: I \rightarrow M_{n}(R)$ is continuous. Suppose a matrix Φ satisfies the system, evaluate $(\operatorname{det} \Phi)^{\prime}$ and assess that if Φ is a fundamental matrix if and only if $\operatorname{det} \Phi \neq 0$.

SECTION E

Answer any ONE of the following.
$(1 \times 20=20)$
14 Formulate a unique solution for a class of initial value problem $x^{\prime}=f(t, x)$ with $x\left(t_{0}\right)=x_{0}$ and discuss for the function $f(t, x)=t+x^{2}, x_{0}=0$.

