	LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034								
M.Sc. DEGREE EXAMINATION – MATHEMATICS									
	FIRST SEMESTER – NOVEMBER 2022								
PMT1MC03 – ORDINARY DIFFERENTIAL EQUATIONS									
	ate: 28-11-2022 Dept. No. Max. me: 01:00 PM - 04:00 PM	: 100) Marks						
	SECTION A								
1	Answer ALL the questions 1 Answer the following. (5 x 1 =								
	Answer the following.	(•	5 . 1						
	5)								
a)	Describe the second order initial value problem.	K1	CO1						
b)	Define linear dependence.	K1	CO1						
	Denne mieur dependence.		001						
c)	What is meant by fundamental matrix?	K1	CO1						
d)	Define regular singular point.	K1	CO1						
e)	Describe the non-oscillatory differential equation.	K1	CO1						
2	Choose the correct answer.	(5 x	1 = 5)						
a)	Let $f: [t_0, \infty] \to [0, \infty]$ be a continuous function and $k > 0$ be a constant. If $f(t) \le 1$								
	$k \int_{t_0}^t f(s) ds$, $t \ge t_0$, then which of the following holds?	K2	CO1						
	(a) $f(t) > 0$ (b) $f(t) < 0$ (c) $f(t) = 0$ (d) none of these								
b)	The Wronskian of 1, x and x^2 is	wo	CO1						
	(a) 1 (b) -1 (c) 2 (d) -2	K2	CO1						
c)	A linear equation $x''' - 6x'' + 11x' - 6x = 0$ is transformed to linear system								
	x' = Ax, where A is	K2	CO1						
	$ (a) \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & 11 & 6 \end{bmatrix} $ (b) $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6 \end{bmatrix} $ (c) $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & 11 & -6 \end{bmatrix} $ (d) $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & 6 \end{bmatrix} $								
d)	When p is an integer, $J_{-P}(t) =$	K2	CO1						
	(a) $J_P(t)$ (b) $pJ_P(t)$ (c) $(-1)^p J_P(t)$ (d) $-J_P(t)$	K2	CO1						
		1							

e)	The equation $x'' - x = 0$ is	K2	CO
	(a) oscillatory (b) non-oscillatory (c) neither (a) nor (b) (d) both (a) and (b)		
	SECTION B		
	Answer any THREE of the following.	(3 x 1() = 3(
3	Apply Picard's successive approximation method to find the solution of the equation $x' = -x, x(0) = 1, t \ge 0$, and verify with analytical method.	K3	CO
4	If the Wronskian of two functions x_1 and x_2 on I is non-zero for at least one point of I, show that x_1 and x_2 are linearly independent. Illustrate to $x_1 = t^2, x_2 = t t $ on $I = (-2,2)$.	K3	СО
5	Consider a linear system $x' = A(t)x$ where $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $A = \begin{bmatrix} -3 & 1 & 0 \\ 0 & -3 & 1 \\ 0 & 0 & -3 \end{bmatrix}$. Show that $\Phi(t) = \begin{bmatrix} e^{-3t} & te^{-3t} & t^2e^{-3t}/2 \\ 0 & e^{-3t} & te^{-3t} \\ 0 & 0 & e^{-3t} \end{bmatrix}$ is a fundamental matrix.	К3	СО
6	Solve the equation $x'' - 2tx' + 2x = 0$.	K3	CO
7	Demonstrate the comparison theorem in Sturm's perspective.	K3	CO
	SECTION C		
	Answer any TWO of the following. (2	x 12.5	5 = 25
8	Let $b_1, b_2,, b_n: I \to \mathbb{R}$ be continuous functions in the <i>n</i> -th order homogeneous differential equation $L(x) = 0$. Let $\varphi_1, \varphi_2,, \varphi_n$ be <i>n</i> linearly independent solutions of $L(x) = 0$ on I. Obtain the Wronskian of $\varphi_1, \varphi_2,, \varphi_n$ and discuss the special case $L(x) = x''' + x'' + x$.	K4	СО
9	Derive the generating function and integral representation of Bessel function.	K4	СО
10	Analyze the solutions of the system $x'_1 = 5x_1 - 2x_2$ and $x'_2 = 2x_1 + x_2$.	K4	СО
11	Explain the Hille-Wintner comparison theorem.	K4	СО
	SECTION D		
	Answer any ONE of the following.	(1 x 15	5 = 15
12	Summarize the method of variation of parameters for solving the second order equation $x''(t) + b_1(t)x'(t) + b_2(t)x(t) = h(t)$ and implement to the particular case $b_1(t) = \frac{-2}{t}$, $b_2(t) = \frac{-2}{t^2}$, and $h(t) = tsint$.	К5	СО
13	Let $x' = A(t)x$ be a linear system where $A: I \to M_n(R)$ is continuous. Suppose a matrix Φ satisfies the system, evaluate $(\det \Phi)'$ and assess that if Φ is a fundamental matrix if and only if $\det \Phi \neq 0$.	K5	CO
	SECTION E	<u> </u>	
	Answer any ONE of the following.		
	Answer any ONE of the following.	(1 x 20	

15 Develop the solution of the Legendre equation and its corresponding polynomial.	K6	CO5
