	LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034										
M.Sc. DEGREE EXAMINATION – MATHEMATICS FIRST SEMESTER – NOVEMBER 2022 PMT1MC04 – DATA STRUCTURES AND ALGORITHMS USING PYTHON											
								-		100	
									Date: 30-11-2022 Dept. No. Max. Time: 01:00 PM - 04:00 PM		
	SECTION - A										
	Answer ALL the Questions:										
1.	Answer the following:	(5 x 1	= 5)								
a)	Identify the difference between break and continue statements in Python.	K1	CO1								
	· · ·										
b)	List any two applications of the data structure queue.	K1	CO1								
c)	Define the performance measures of an algorithm.	K1	CO1								
d)	Write the principle of optimality.	K1	CO1								
e)	State Cook's theorem.	K1	CO1								
2.	Choose the correct answer:	(5 x 1 = 5)									
a)	How many times the following program segment will be executed?										
	<i>i</i> = input ('Enter the number')										
	while $i != 0$:	K2	CO1								
	print (2 ** <i>i</i>)										
	(i) 0 (ii) 1 (iii) 2 (iv) infinite										
b)	Which of the following data structure is used to represent the linear relationship										
	between elements by means of sequential memory locations?	K2	CO1								
	(i) Tree (ii) Array (iii) Stack (iv) Queue										
c)	The frequency count of all statements in the following algorithm segment is										
	for $i \leftarrow 0$ to $n-1$ do										
	$b \leftarrow 0$										
	for $j \leftarrow 0$ to $n-1$ do	K2	CO1								
	$b \leftarrow b + x[i]$										
	$A[i] \leftarrow b * (i + 1)$ return A										
	(i) $n^2 + n + 1$ (ii) $n^2 + 5n + 2$ (iii) $n^2 + n + 2$ (iv) $n^2 + n + 3$										

d)	Let G be a connected graph with 16 vertices and 25 edges. The weight of a minimum					
	spanning tree is 60. If the weight of each edge of <i>G</i> is increased by 5, then the weight					
	of a minimum spanning tree is	K2	CO1			
	(i) 60 (ii) 120 (iii) 135 (iv) 225					
e)	The following is the list of nodes of a tree <i>T</i> given in sequential order:					
()						
		K2	CO1			
	Which of the following is the postorder traversal of the tree?	112	001			
	(i) ABCDE (ii) DBACE (iii) ABDCE (iv) DBECA					
	SECTION - B	i				
Answer any THREE Questions: (3 x 10 = 30)						
3.	Explain the need of using conditional branching statements. Illustrate with suitable					
э.	Python code.	K3	CO2			
4.	Write a Python function to test a given string is a palindrome using deque.	K3	CO2			
	State Algorithm Domition and illustrate its execution on the arrow $A[1:9] = (22, 12)$					
5.	State Algorithm Partition and illustrate its execution on the array $A[1:8] = (23, 13, 15, 51, 1, 60, 15, 21)$	K3	CO2			
	45, 51, 4, 60, 15, 21).					
6.	Formulate an algorithm for optimal storage on Tapes using greedy strategy and					
	simulate on three tapes T_0 , T_1 , T_2 and programs of lengths 12, 5, 56, 34, 22, 44, 88,	K3	CO2			
	66, 45, 9.					
7.	Explain satisfiability problem and present an algorithm to determine whether a	K3	CO2			
	propositional formula is satisfiable.	IX.J	002			
	SECTION - C	<u>.</u>				
Ans	wer any TWO Questions:	(2 x 12.5	= 25)			
8.	Develop a Python code to perform insertion and deletion operations on a stack. Show					
0.	how the code works when there are 6 insertions and 5 deletions on a stack which is	K4	CO3			
	initially empty.					
9.	Form a heap from the array $A[1:7] = (56, 13, 5, 23, 61, 40, 33)$ using Algorithm Heapify.	K4	CO3			
10	Design an algorithm to solve the longest common subsequence problem using dynamic					
10.	programming. Use it to find the longest subsequence in the strings 'ABCBEAD' and	K4	CO3			
	'BCEADC'.					
11.	Construct a breadth first search tree with start vertex <i>a</i> for the following graph:					
	a b					
		V A	CO2			
		K4	CO3			
	h					
	g					
		<u> </u>				

	SECTION D			
Answer any ONE Question: (1 x 15 = 15)				
12.	Give a Python implementation to create and print the elements of a binary search tree. Run the code for the input list 60, 25, 75, 15, 33, 14.	K5	CO4	
13.	Present an algorithm using greedy strategy to obtain the optimal solution for knapsack		CO4	
	problem. Prove that the algorithm generates an optimal solution and determine the	K5		
	optimal solution to the instance: $n = 4$, $m = 13$, $(p_1, p_2, p_3, p_4) = (40, 42, 25, 12)$ and $(w_1, w_2, w_3, w_4) = (4, 7, 5, 3)$.			
	SECTION E			
Ans	Answer any ONE Question:			
14.	Create a recursive sort algorithm which merges two sorted arrays using divide and			
	conquer strategy and find the worst-case time complexity of the algorithm. Run the	K6	CO5	
	algorithm on the inputs 77, 27, 67, 37, 47, 7, 57, 17 and trace the tree of calls.			
15.	Develop an algorithm to determine all possible subsets of a set w that sums to m using		*	
	backtracking technique. Run the algorithm when $w = \{2, 6, 8, 10, 12\}$ and $m = 20$.	K6	CO5	
	Also, draw the portion of state space tree generated by SumOfSub. Propose a real-time	NU		
	problem which can be solved using backtracking technique.			
	@@@@@@@			