LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **PHYSICS**

FIRST SEMESTER - NOVEMBER 2022

UMT 1301 – MATHEMATICS FOR PHYSICS

Date: 01-12-2022 Time: 01:00 PM - 04:00 PM

Dept. No.

Max.: 100 Marks

	SECTION - A										
Answer ALL the Questions											
1.	Answer the following	$(5 \times 1 = 5)$									
a)	State Leibnitz formula.	K1	CO1								
b)	State D'Alembert's ratio test.	K1	CO1								
c)	Define Laplace transform.	K1	CO1								
d)	State Cayley-Hamilton theorem.	K 1	CO1								
e)	Define binomial distribution.	K 1	CO1								
2.	Fill in the blanks (5 x 1)										
a)	The formula to find the subtangent at a point <i>P</i> on the curve $y = f(x)$ is	K1	CO1								
b)	The series expansion of e^x , for a real number x is	K1	CO1								
c)	The inverse Laplace transform of $\frac{1}{s+2}$ is	K1	CO1								
d)	The characteristic equation of a square matrix A is	K1	CO1								
e)	The probability of getting a head on tossing a coin once is	K1	CO1								
3.	Choose the correct answer (5 x 1 =										
a)	The n^{th} derivative of e^{ax} is (i) e^{ax} (ii) ae^{ax} (iii) $a^n e^{ax}$ (iv) $a^n e^x$	K2	CO1								
b) c)	If $ x < 1$, then the series $1 + x + x^2 + \cdots$ converges to (i) $(1 + x)^{-1}$ (ii) $(1 - x)^{-1}$ (iii) $(1 - x)^{-2}$ (iv) $(1 + x)^{-2}$ What is $L\{\sinh 3t\}$?	K2	CO1								
d)	(i) $\frac{s}{s^2+9}$ (ii) $\frac{3}{s^2-9}$ (iii) $\frac{s}{s^2-9}$ (iv) $\frac{3}{s^2+9}$ The determinant of an $n \times n$ identity matrix is (i) n (ii) $2n$	K2	CO1								

	(iii) (iv)	n ² 1									K2	CO1
e)			he Poisso	n distrib	oution fu	nction is						
	(i)	$\frac{e^{-\lambda}\lambda^x}{\lambda}$										
	(ii)	$-\lambda x$									K2	CO1
	(iii)	$e^{\lambda} \lambda^{-x}$										
	(iv)	$e^{-\lambda}\lambda^x$										
4.	Say True or False										(5 x 1	l = 5)
a)	The minimum value of the function $f(x) = x^2$ is 0.										K2	CO1
b)	The serie	es $\sum_{n=1}^{\infty} \frac{1}{n}$	$\frac{1}{10.5}$ is con	vergent.							K2	C01
c)	The Laplace transform can be found for a function $f(t)$, for $t < 0$.										K2	CO1
d)	The identity matrix of order 2 is $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.										K2	CO1
e)	The normal distribution curve is bell shaped.										K2	CO1
L					SE	CTION	- B					
Ansy	wer any '			-		ds					(2 x 1	0 = 20
5.	Find the <i>n</i> th derivative of $\frac{3}{(x+1)(2x-1)}$.								K3	CO2		
6.	Find $L^{-1}\left\{\frac{1}{s(s+1)(s+2)}\right\}$.									K3	CO2	
7.	Find the inverse of the matrix $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}$.									K3	CO2	
8.	 An urn contains 6 white, 4 red and 9 black balls. If 3 balls are drawn at random, find the probability that: (i) two of the balls are drawn white. (ii) one is of each colour. (iii) none is red. (iv) at least one is white. 									К3	CO2	
	(11)				SE	CTION	- C					.1
Ansv	wer any '	TWO of	the follo	wing in	100 wor	ds					(2 x 1	0 = 20)
9.	Find the maxima and minima of the function $2x^3 - 3x^2 - 36x + 10$.										K4	CO3
10.	Test the convergence of the series $\frac{1}{1\cdot 2\cdot 3} + \frac{3}{2\cdot 3\cdot 4} + \frac{5}{3\cdot 4\cdot 5} + \cdots$										K4	CO3
11.	Using Laplace transform evaluate $\int_0^\infty t e^{-3t} \cos t dt$.									K4	CO3	
12.	Calculate the correlation coefficient for the following data.											
	X	65	66	67	67	68	69	70	72		K4	CO3
	Y	67	68	65	68	72	72	69	71	1		

					SEC	TION –	D				
Answer any ONE of the following in 250 words									$(1 \times 20 = 20)$		
13.	show	$v = e^{a \sin^{-1}}$ w that $(1 - 1)^{-1}$	$(x^2)y_{n+2}$	$_{2} - (2n + $	$-1)xy_{n+1}$	$n_1 - (n^2 - 1)$	$(a^2)y_n$		(10 Marks)	K5	CO4
	(b) Find the sum of the series $1 + \frac{3}{4} + \frac{3 \cdot 5}{4 \cdot 8} + \frac{3 \cdot 5 \cdot 7}{4 \cdot 8 \cdot 12} + \cdots$ (10 Marks)									K5	CO4
14.	(a) Solve the following system of equations using Cramer's rule. 2x - y + 3z = 9; x + y + z = 6; x - y + z = 2. (10 Marks)									K5	CO4
	542 (i	lculate the 2 students. Age in years) No. of nembers	mean for 20-30 3	the follo 30-40 61	wing tab 40-50 132	le giving 50-60 153	the age c 60-70 140	listributio 70-80 51	on of 80-90 2	K5	CO ²
					SEC	TION -	F		(10 Marks)		
Ans	wer any	y ONE of t	the follow	ving in 2					(1	x 20 =	20)
Answer any ONE of the following in 250 words (1 15. (a) Show that if $x > 0$, $\log x = \frac{x-1}{x+1} + \frac{1}{2} \frac{x^2-1}{(x+1)^2} + \frac{1}{3} \frac{x^3-1}{(x+1)^3} + \cdots$ (10 Marks)									K6	CO5	
(b) By using Laplace transform solve the differential equation $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = 4e^{-4t}, \text{ given that } y(0) = y'(0) = 0.$ (10 Marks)									K6	CO5	
16.	Find the characteristic roots and associated characteristic vectors of the matrix $\begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$. Is it possible to find the inverse of the matrix? Justify.								K6	COS	

@@@@@@@