LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034											
1	B.Sc. DEGREE EXAMINATION – CHEMISTRY										
1	FIRST SEMESTER – NOVEMBER 2022										
UMT 1302 – MATHEMATICS FOR CHEMISTRY											
I	Date: 01-12-2022 Dept. No. Max. : 100 Marks										
Time: 01:00 PM - 04:00 PM											
	SECTION - A										
Answer ALL the Questions											
1.	Answer the following	(5 x	1 = 5)								
a)	What is the differential coefficient of x^n ?	K1	CO1								
b)	Write the expansion of $(1 - x)^{-n}$.	K1	CO1								
c)	Evaluate $\int x e^x dx$.	K1	CO1								
d)	Write the expansion of $\sin n\theta$.	K1	CO1								
e)	For a binomial distribution the mean is 6 and the standard deviation is $\sqrt{2}$. Find the	K1	CO1								
	value of p and q .										
2.	Fill in the blanks	(5 x 1	1 = 5)								
a)	The length of the polar subtangent of a curve at a given point is given by	K1	CO1								
b)	The expansion of $\frac{e^{x}+e^{-x}}{2}$ is	K1	CO1								
c)	$\int \cos^2 x dx$ is	K 1	CO1								
d)	The value of $(\cos\theta - i\sin\theta)^5$ is	K1	CO1								
e)	The mean of Poisson distribution is	K1	CO1								
3.	. Choose the correct answer										
a)	If a point is not having maxima or minima at a point, then	K2	CO1								
	a. $r = 0$										
	$\begin{array}{c} 0, r > 0 \\ c, r < 0 \end{array}$										
	d. None of these										
b)	Which of the following can be used to find the infinite sum?	K2	CO1								
	a. Binomial series expansion										
	b. Binomial distribution										
	c. Poisson distribution										
	d. None of the above										
c)	$\int \frac{x}{x+5} dx \text{ is } \dots$	K2	CO1								
	a. 0										
	b. $1 - (x + 5))$										
	c. 1										
	d. $x - 5\log(x + 5)$										
		l									

d)	$\frac{a+ib}{a+id} = \dots$								K2	CO1			
	c+id a(ac+bd) = i(bc-ad)												
	$\frac{ac+bd}{b}$)											
	$0. \frac{1}{c+d}$												
	C. $\frac{(uc+bu)+i((bc-uu))}{c^2+d^2}$												
	d. None of the above												
e)	The correlation coefficie	ent $\rho(x, y)$) lies betv	veen	••••				K2	CO1			
	a. 0 and 1												
	b1 and 1												
	c2 and 0												
	d1 and 2												
4.	Say True or False		$(5 \times 1 = 5)$										
a)	The slope of the tangent	in the pol	lar coordi	nates is t	$tan\Psi = \Psi$	$\Psi + \theta$.			K2	CO1			
b)	There is an additional fa	ctor only	in the nur	nerator f	or every	successiv	ve term f	or	K2	CO1			
	binomial expansion.												
c)	Integration can also be used to find area of the given region.									CO1			
d)	If n is any integer, then	(cosθ + i	$(sin\theta)^n =$	= cosnθ ·	+ isin nt).			K2	CO1			
e)	The mean and variance	of binomi	al distribu	ition is n	$p \text{ and } \frac{np}{q}$.				K2	CO1			
	SECTION - B												
Ans	Answer any TWO of the following												
5.	Predict the length of the	e subtange	ent, subno	rmal, tan	igent and	normal a	at the poi	nt (<i>a</i> , <i>a</i>)	K3	CO2			
	on the cissoid $y^2 = \frac{x^3}{2a^2}$	-~·											
6.	Determine the sum of the	he series t	o infinity	using bin	nomial se	ries expa	ansion		K3	CO2			
	15 15 21 15 21	27		-									
	$\frac{10}{16} + \frac{10}{16} \cdot \frac{10}{24} + \frac{10}{16} \cdot \frac{10}{24}$	$\frac{2}{32} + \cdots$											
7.	(i) Solve $\int \frac{x-1}{(x-2)(x-2)} dx$	к.							K3	CO2			
	(x-2)(x-3)	1	- / 0		- 7		/ -	·					
	(ii) Show that $\sin^5\theta =$	$\frac{1}{16}$ [sin5 θ	– 5 <i>sin</i> 3	$\theta + 10si$	inθ].		(5+	5) Marks					
8.	Determine the mean and	d standard	l deviation	n for the	following	g table gi	ving the	age	K3	CO2			
	distribution of 542 men	nbers.											
	Age (in years)	20-30	30-40	40-50	50-60	60-70	70-80	80-90					
	No. of Members	3	61	132	153	140	51	2					
		L	S	ECTION	N - C								
1 no		llowing	~-		• •				(? 10	- 20)			
Апъ										= 20)			
9.	Determine the angle of intersection between the curves $x^2 = 4y$ and $x^2 = 4y$.									CO3			
10.	. Calculate the sum of the series using exponential series expansion									CO3			
	$1 + \frac{1+3}{2!} + \frac{1+3+3^2}{3!} + \frac{1+3+3^2+3^3}{4!} + \dots \infty.$												
11.	1. (i) Determine $\int \frac{2x+1}{\sqrt{3+4x-x^2}} dx$.												
	(ii) Estimate the value of $cos5\theta$ in terms of $cos\theta$. (6+4) Marks												

12. Calculate the correlation coefficient for the following heights (in inches) of fathers (<i>X</i>) K4										CO3				
	and their sons (Y):													
	X	65	66	67	67	68	6	59	70	72	7			
	Y	67	68	65	68	72	7	72	69	71				
SECTION - D														
Answer any ONE of the following ((1 x 20	= 20)		
13.	Estimate the maximum and minimum value of the function												K5	CO4
	$f(x, y) = x^3 + y^3 - 3x - 12y + 20.$													
14.	(i) Deri	ve the se	ries expa	ansion f	or log((1 + x)	•						K5	CO4
	(ii) Is $log\sqrt{2} = 1 + (\frac{1}{2} + \frac{1}{3})\frac{1}{4} + (\frac{1}{4} + \frac{1}{5})\frac{1}{4^2} + (\frac{1}{6} + \frac{1}{7})\frac{1}{4^3} + \cdots$ Justify your answer.										ſ.			
	(10+10) Marl											Marks		
SECTION - E														
Answer any ONE of the following(1 x 20 = 20)														
15.	(i) Integ	grate $\int \frac{2}{x^2}$	$\frac{x+3}{+x+1}dx.$										K6	CO5
	(ii) By	~ expandin	$\log sin^5 \theta$	$\cos^2\theta$,	justify	that								
	2 ⁶ si	$2^{6}sin^{5}\theta cos^{2}\theta = sin7\theta - 3sin5\theta + sin3\theta + 5sin\theta $ (10+10) Marks												
16.	The fol	lowing ir	nformatio	on show	vs the r	narks re	eceive	d by 1() contes	tants in	a mus	ic	K6	CO5
	compet	- ition fror	m three j	udges:				•						
	Rank	by A	80	68	70	75	59	78	73	60	66	64		
	Rank	by B	80	76	68	78	70	65	83	85	74	66		
	Rank	by C	64	68	58	60	75	74	70	56	66	62		
	Using r	ank corre	elation m	iethod,	discuss	which	pair o	of judge	es have	the near	rest ap	proach		
	to com	mon likin	ıgs in mu	isic?			-	-				-		
						@@	0@@@	@@						