LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - CHEMISTRY

FIRST SEMESTER - NOVEMBER 2022

UMT 1302 - MATHEMATICS FOR CHEMISTRY

Date: 01-12-2022
Time: 01:00 PM - 04:00 PM
Dept. No. Max. : 100 Marks

SECTION - A

Answer ALL the Questions

1. Answer the following
a) What is the differential coefficient of x^{n} ?
b) Write the expansion of $(1-x)^{-n}$.
c) Evaluate $\int x e^{x} d x$.

K1 CO1
d) Write the expansion of $\sin n \theta$.

K1 CO1
e) For a binomial distribution the mean is 6 and the standard deviation is $\sqrt{2}$. Find the

K1 CO1 value of p and q.
2. Fill in the blanks
a) The length of the polar subtangent of a curve at a given point is given by

K1 CO1
b) The expansion of $\frac{e^{x}+e^{-x}}{2}$ is
K1 CO1
c) $\int \cos ^{2} x d x$ is $\ldots . . \quad$ K1 \quad CO1

e) The mean of Poisson distribution is
3. Choose the correct answer (5 \quad 1 $=5$)
a) If a point is not having maxima or minima at a point, then

K2 CO1
a. $r=0$
b. $r>0$
c. $r<0$
d. None of these
b) Which of the following can be used to find the infinite sum?
a. Binomial series expansion
b. Binomial distribution
c. Poisson distribution
d. None of the above
c) $\int \frac{x}{x+5} d x$ is
a. 0
b. $1-(x+5))$
c. 1
d. $x-5 \log (x+5)$

d)	$\overline{\frac{a+i b}{c+i d}}=\ldots \ldots \ldots \ldots$ a. $(a c+b d)-i(b c-a d)$ b. $\frac{a c+b d}{c+d}$ c. $\frac{(a c+b d)+i((b c-a d))}{c^{2}+d^{2}}$ d. None of the above								K2	CO 1
e)	The correlation coefficient $\rho(x, y)$ lies between. a. 0 and 1 b. -1 and 1 c. -2 and 0 d. -1 and 2								K2	CO1
4.	Say True or False								($5 \times 1=5$)	
a)	The slope of the tangent in the polar coordinates is $\tan \Psi=\Psi+\theta$.								K2	CO1
b)	There is an additional factor only in the numerator for every successive term for binomial expansion.								K2	CO1
c)	Integration can also be used to find area of the given region.								K2	CO1
d)	If n is any integer, then $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$.								K2	CO1
e)	The mean and variance of binomial distribution is $n p$ and $\frac{n p}{q}$.								K2	CO1
SECTION - B										
Answer any TWO of the following									($2 \times 10=20)$	
5.	Predict the length of the subtangent, subnormal, tangent and normal at the point (a, a) on the cissoid $y^{2}=\frac{x^{3}}{2 a-x}$.								K3	CO 2
6.	Determine the sum of the series to infinity using binomial series expansion$\frac{15}{16}+\frac{15}{16} \cdot \frac{21}{24}+\frac{15}{16} \cdot \frac{21}{24} \cdot \frac{27}{32}+\cdots$								K3	CO 2
7.	(i) Solve $\int \frac{x-1}{(x-2)(x-3)} d x$. (ii) Show that $\sin ^{5} \theta=\frac{1}{16}[\sin 5 \theta-5 \sin 3 \theta+10 \sin \theta]$.								K3	CO 2
8.	Determine the mean and standard deviation for the following table giving the age distribution of 542 members.								K3	CO 2
SECTION - C										
Answer any TWO of the following									$(2 \times 10=20)$	
9.	Determine the angle of intersection between the curves $x^{2}=4 y$ and $x^{2}=4 y$.								K4	CO 3
10.	Calculate the sum of the series using exponential series expansion$1+\frac{1+3}{2!}+\frac{1+3+3^{2}}{3!}+\frac{1+3+3^{2}+3^{3}}{4!}+\cdots \infty .$								K4	CO3
11.	(i) Determine $\int \frac{2 x+1}{\sqrt{3+4 x-x^{2}}} d x$. (ii) Estimate the value of $\cos 5 \theta$ in terms of $\cos \theta$.						(6+) Marks	K4	CO 3

12. Calculate the correlation coefficient for the following heights (in inches) of
and their sons (Y) :

X	65	66	67	67	68	69	70	72
Y	67	68	65	68	72	72	69	71

Answer any ONE of the following
13. Estimate the maximum and minimum value of the function $f(x, y)=x^{3}+y^{3}-3 x-12 y+20$.
14. (i) Derive the series expansion for $\log (1+x)$.
(ii) Is $\log \sqrt{2}=1+\left(\frac{1}{2}+\frac{1}{3}\right) \frac{1}{4}+\left(\frac{1}{4}+\frac{1}{5}\right) \frac{1}{4^{2}}+\left(\frac{1}{6}+\frac{1}{7}\right) \frac{1}{4^{3}}+\cdots$ Justify your answer.
(10+10) Marks

SECTION - E

Answer any ONE of the following
15. (i) Integrate $\int \frac{2 x+3}{x^{2}+x+1} d x$.
(ii) By expanding $\sin ^{5} \theta \cos ^{2} \theta$, justify that
$2^{6} \sin ^{5} \theta \cos ^{2} \theta=\sin 7 \theta-3 \sin 5 \theta+\sin 3 \theta+5 \sin \theta$.
(10+10) Marks
16. The following information shows the marks received by 10 contestants in a music competition from three judges:

Rank by A	80	68	70	75	59	78	73	60	66	64
Rank by B	80	76	68	78	70	65	83	85	74	66
Rank by C	64	68	58	60	75	74	70	56	66	62

Using rank correlation method, discuss which pair of judges have the nearest approach to common likings in music?

