LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FIRST SEMESTER – **NOVEMBER 2022**

UMT 1501 – ALGEBRA

Date: 24-11-2022 Dept. No.

Time: 01:00 PM - 04:00 PM

	SECTION - A								
Answer ALL the Questions									
1.	Answer the following.(5 x 1 = 5 Mark								
a)	Identify the other roots of a biquadratic equation, when one of the roots is $\sqrt{5} - \sqrt{2}$.	K1	CO1						
b)	State Descartes rule of sign.	K1	CO1						
c)	Convert into partial fractions: $\frac{1}{(x-1)(x-2)}$.	K1	CO1						
d)	State Cayley-Hamilton theorem.	K1	CO1						
e)	Define Euler function.	K1	CO1						
2.	Fill in the blanks.(5 x 1 = 5 Marks)								
a)	The product of the roots of the equation $x^4 - 5x^3 + 4x^2 - 6x + 21 = 0$ is	K1	CO1						
b)	The number of maximum possible positive real roots of the equation $x^5 - 2x^4 - 4x^3 + 5x^2 - x + 9 = 0$ is								
c)	The expansion of $e^x + e^{-x}$ is	K1	CO1						
d)	The characteristic equation of the matrix $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 6 \\ 0 & 0 & -5 \end{bmatrix}$ is	К1	CO1						
e)	The formula for the product of all divisors of a number N is	K1	CO1						
3.	Choose the correct answer for the following. (5 x 1 = 5 Marks)								
a)	 Every equation f(x) = 0 with nth degree has a. at least n-1 roots b. at most n+1 roots c. exactly n roots d. none of these 	К2	C01						
b)	One of the positive roots of the equation $x^3 - 3x + 1 = 0$ lies between a. 1 and 2 b. 2 and 3 c. 3 and 4 d. 4 and 5	К2	CO1						
c)	The general term in the expansion of $(x + a)^n$ is	К2	CO1						

Max.: 100 Marks

	$a = a C = a^{n} a^{r}$						
	a. $nC_r x^n u^n$						
	b. $nC_r x^n \cdot a^n$						
	c. $nC_r x' a^n$						
	d. $nC_r x' a^{n-r}$						
d)	The sum of the eigenvalues of the matrix $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ is	К2	CO1				
	$\begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$						
	a) 4 b) -6 c) 2 d) -2		001				
e)	If N is a prime number, then $\varphi(N)$ is	К2	CO1				
	a) 0 b) N c) N+1 d) N-1						
4.	Say TRUE or FALSE.(5 x 1 = 5 Marks)						
a)	If $f(a)$ and $f(b)$ are of like unlike signs, an odd number of roots of $f(x)$ lies between a and b .	K2	CO1				
b)	Cardon's method is applicable for odd and even degree equations.	К2	CO1				
, c)	If $-1 < x < 1$, then $\log(1 + x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \cdots$.	K2	CO1				
d)	For every square matrix the sum and product of eigenvalues are always	K2	CO1				
	equal.						
e)	If $a \equiv b \pmod{m}$, then $a^n \equiv b^n \pmod{m}$.	К2	CO1				
	SECTION - B						
Ans	wer any TWO of the following. (2 x 10 = 2	20 M	arks)				
5	Solve the equation $x^4 + 4x^3 + 5x^2 + 2x - 2 = 0$ of which one root is	КЗ	CO2				
	$-1 + \sqrt{-1}.$						
6	Determine the sum of the fourth powers of the roots of the roots of the						
	equation $x^5 - x^4 + 6x^2 - 4x + 5 = 0$.						
7	Apply exponential series to find the sum of the series $1 + \frac{1+3}{4} + \frac{1+3+3^2}{4} + \frac{1+3+3^2}{4}$						
	Apply exponential series to find the sum of the series $1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{3!}$						
	$\frac{1}{4!}$ + to ∞ .						
8	Determine the sum and product of eigen values using characteristic						
	[6 -2 2]						
	equation for the matrix $A = \begin{bmatrix} -2 & 3 & -1 \end{bmatrix}$.						
		<u></u>					
Ans	wer any 1 wu of the following. $(2 \times 10 = 2)$	UIVIA	irks)				
9	Determine the roots of the equation $6x^3 - x^4 - 43x^3 + 43x^2 + x - 6 =$	К4	CO3				
	0.						
10	Resolve into partial fraction $\frac{x^2-10x+13}{(x-1)(x^2-5x+6)}$.	K4	CO3				
11	Utilize the Cayley-Hamilton theorem, find the inverse for the matrix $A =$	К4	CO3				
	$\begin{bmatrix} 1 & -1 & 2 \end{bmatrix}$						
	$\begin{vmatrix} -2 & 1 & 3 \\ -2 & -2 & -2 \\ -2 & -2 & -2 \\ -2 & -2 &$						
	<u> L 3 2 -3</u>						

12	Def	ine amicable numbers. Also, show that 220 and 284 are amicable	K4	CO3				
	nun	nbers.						
SECTION - D								
Ans	Answer any ONE of the following.(1 x 20 = 20 Marks)							
13		Using Horner's method, predict the positive root of $x^3 - 2x^2 - 3x - 4 = 0$	K5	CO4				
		which lies between 3 and 4, correct to two decimal places.						
14	(a)	Prove Fermat's theorem and illustrate with an example. (10 Marks)	K5	CO4				
	(b)	Determine the sum of the infinite series $\frac{15}{16} + \frac{15 \cdot 21}{16 \cdot 24} + \frac{15 \cdot 21 \cdot 27}{16 \cdot 24 \cdot 32} + \cdots$						
		(10 Marks)						
		SECTION - E						
Ans	wer	any ONE of the following. $(1 \times 20 = 2)$	20 Ma	arks)				
15	a)	Explain arithmetic progression and hence show that the roots of the		CO5				
		equation $x^3 + px^2 + qx + r = 0$ are in arithmetical progression if	К6					
		$2p^3 - 9pq + 27r = 0$. Can you relate $x^3 - 6x^2 + 13x - 10 = 0$						
		with $x^3 + px^2 + qx + r = 0$? If the relation exists, then solve the						
		$x^3 - 6x^2 + 13x - 10 = 0.$						
		(12 Marks)						
	b)	If a, b, c denote three consecutive integers, formulate that $\log b =$	K6	CO5				
		$\frac{1}{2}\log a + \frac{1}{2}\log c + \frac{1}{2ac+1} + \frac{1}{3}\frac{1}{(2ac+1)^3} + \cdots.$ (8 Marks)						
16	a)	$\begin{bmatrix} a_{11} & a_{12} & a_{13} \end{bmatrix}$	K6	CO5				
		Construct a 3 × 3 matrix $A = \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{23} & a_{24} & a_{25} \end{bmatrix}$ from the roots of the						
		following cubic equations.						
		(i) The three roots of $x^3 - 5x^2 + 8x - 4 = 0$ are						
		(a_{11}, a_{12}, a_{13}) where $a_{11} \le a_{12} \le a_{13}$.						
		(ii) The three roots of $x^3 - 2x^2 + x = 0$ are (a_{21}, a_{22}, a_{23})						
		where $a_{21} \le a_{22} \le a_{23}$.						
		(iii) The three roots of $x^3 - 4x^2 + 4x = 0$ are (a_{31}, a_{32}, a_{33})						
		where $a_{31} \le a_{32} \le a_{33}$.						
		Also, verify Cayley-Hamilton theorem for the above constructed						
		matrix. (14 Marks)						
	b)	Determine the number, sum and product of all the divisors of 360.	К6	CO5				
		(6 Marks)						
(