LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - NOVEMBER 2022
UMT 1501 - ALGEBRA
Date: 24-11-2022
Time: 01:00 PM - 04:00 PM

a. $n C_{r} x^{n} a^{r}$
b. $n C_{r} x^{n-r} a^{r}$
c. $n C_{r} x^{r} a^{n}$
d. $n C_{r} x^{r} a^{n-r}$
d)

The sum of the eigenvalues of the matrix $A=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$ is
a) 4
b) -6
c) 2
d) -2
e) If N is a prime number, then $\varphi(N)$ is
a) 0
b) N
c) $\mathrm{N}+1$
d) $\mathrm{N}-1$
4. Say TRUE or FALSE.

a)	If $f(a)$ and $f(b)$ are of like unlike signs, an odd number of roots of $f(x)$ lies between a and b.	K2	CO1
b)	Cardon's method is applicable for odd and even degree equations.	K2	CO1
c)	If $-1<x<1$, then $\log (1+x)=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots$.	K2	CO1
d)	For every square matrix the sum and product of eigenvalues are always equal.	K2	CO1
e)	If $a \equiv b(\bmod m)$, then $a^{n} \equiv b^{n}(\bmod m)$.	K2	CO1

SECTION - B

Answer any TWO of the following.

5	Solve the equation $x^{4}+4 x^{3}+5 x^{2}+2 x-2=0$ of which one root is $-1+\sqrt{-1}$.	K 3	CO 2
6	Determine the sum of the fourth powers of the roots of the roots of the equation $x^{5}-x^{4}+6 x^{2}-4 x+5=0$.	K 3	CO 2
7	Apply exponential series to find the sum of the series $1+\frac{1+3}{2!}+\frac{1+3+3^{2}}{3!}+$ $\frac{1+3+3^{2}+3^{3}}{4!}+\ldots$ to ∞.	K 3	CO 2
8	Determine the sum and product of eigen values using characteristic		
equation for the matrix $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$.	K 3	CO 2	

SECTION - C

Answer any TWO of the following.

9	Determine the roots of the equation $6 x^{5}-x^{4}-43 x^{3}+43 x^{2}+x-6=$ 0.	K 4	CO
10	Resolve into partial fraction $\frac{x^{2}-10 x+13}{(x-1)\left(x^{2}-5 x+6\right)}$.	K4	CO
11	Utilize the Cayley-Hamilton theorem, find the inverse for the matrix $A=$ $\left[\begin{array}{ccc}1 & -1 & 2 \\ -2 & 1 & 3 \\ 3 & 2 & -3\end{array}\right]$. K 4	CO 3	

