LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS
 FIRST SEMESTER - NOVEMBER 2022
 UMT 1502 - CALCULUS

Date: 03-12-2022
Time: 01:00 PM - 04:00 PM
Dept. No. \square

Max. : 100 Marks

SECTION A

Answer ALL the Questions

1.	Answer the following:	($5 \times 1=5$)	
a)	State the Leibnitz formula for the derivative of the product of two functions.	K1	CO1
b)	Write the formula to find the angle between two curves in polar coordinates	K1	CO1
c)	State any two properties of definite integral.	K1	CO1
d)	State a result on Jacobian.	K1	CO1
e)	Write any two properties of beta function.	K1	CO1
2.	Fill in the blanks	($5 \times 1=5$)	
a)	The $\mathrm{n}^{\text {th }}$ derivative of $y=e^{3 x}$ is	K1	CO1
b)	The slope of the curve $r=a(1-\cos \theta)$ at $\theta=\pi / 2$ is	K1	CO1
c)	If f is an odd function, then $\int_{-a}^{a} f(x) d x$ is	K1	CO1
d)	If $f(x, y)=x y(x+y)$, then $\int_{0}^{3} \int_{1}^{2} f(x, y) d x d y$ is equal to	K1	CO1
e)	The value of $\Gamma(1 / 2)$ is _____.	K1	CO1

3. Choose the correct answer for the following

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{\prime}(x)=0$ and $f^{\prime \prime}(x)<0$. Then at the point x , the function f is
a)
(ii) decreasing
(iii) attains a maximum value
(iv) attains a minimum value

If the curvature of a curve is $\frac{\pi}{6}$, then the radius of the curvature is
b)
(i) $\frac{\pi}{3}$
(ii) $\frac{\pi^{2}}{36}$
(iii) $\frac{6}{\pi}$
(iv) $\frac{\pi^{2}}{6}$

The $\int \sin 3 x d x$ is equal to
c)
(i) $\frac{1}{12} \cos 3 x+\frac{3}{4} \sin x$
(ii) $\frac{-1}{3} \cos 3 x$
(iii) $\frac{3}{4} \sin x$
(iv) $\frac{1}{12} \sin 3 x+\frac{3}{4} \sin x$
d)

The Jacobian of u, v with respect to x, y is denoted by
K2 CO 1
(i) $J\left(\frac{u+v}{x+y}\right)$
(ii) $J\left(\frac{u, v}{x, y}\right)$
(iii) $J\left(\frac{x y}{v v}\right)$
(iv) $J\left(\frac{x, y}{u, v}\right)$
e)

The value of $\beta(1,1)$ is
(i) π
(ii) 1
(iii) $\sqrt{\pi}$
(iv) 2

4.	Say TRUE or FALSE	(5x1=5)	
a)	The Lagrange's method of multipliers is used to find the maximum or minimum values of $f(x, y, z)$ subject to condition $\varphi(x, y, z)=0$.	K2	CO1
b)	The formula to find the angle between two curves at (x,y) is $\theta=\tan ^{-1}\left(\frac{y}{x}\right)$.	K2	CO1
c)	The value of $\int_{0}^{\pi} \sin x d x$ is 2 .	K2	CO1
d)	The Jacobian of x, y with respect to r, θ given $x=r \cos \theta$ and $y=r \sin \theta$ is 1 .	K2	CO1
e)	Gamma function is said to be as Euler's integral of second kind.	K2	CO1
SECTION B			
Answer any TWO of the following		($2 \times 10=20$)	
5.	Derive the $\mathrm{n}^{\text {dr }}$ derivative of $\sin a x+e^{b x}$.	K3	CO2
6.	Prove that the subtangent for any point on the curve $y=b e^{x / a}$ is of constant length and the subnormal is y^{2} / a.	K3	CO2
7.	Evaluate $\int \frac{3 x+1}{(x-1)^{2}(x+2)} d x$	K3	CO 2
8.	Evaluate $\iint r \sqrt{\left(a^{2}-r^{2}\right)} d r d \theta$ over the upper half of the circle $r=a \cos \theta$.	K3	CO 2
SECTION C			
Answer any TWO of the following		$(2 \times 10=20)$	
9.	Find the coordinates of the centre of curvature of the curve $y=x^{2}$ at the point $(1 / 2$, 1/4).	K4	CO3
10.	Evaluate (i) $\int_{0}^{\frac{\pi}{2}} \log \sin x d x$. (ii) $\int x^{n} \log x d x$	K4	CO3
11.	By transforming into polar coordinates, evaluate $\iint \frac{x^{2} y^{2}}{x^{2}+y^{2}} d x d y$ over the annular region between the circles $x^{2}+y^{2}=a^{2}$ and $x^{2}+y^{2}=b^{2}$ where $b>a$.	K4	CO3
12.	(a) Show that $\Gamma(n+1 / 2)=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n}} \sqrt{\pi}$. (b) Evaluate $\int x^{7}(1-x)^{8} d x$.	K4	CO3
SECTION D			
Answer any ONE of the following		$(1 \times 20=20)$	
13.	(a) If $y=\sin ^{-1} x$, prove that $\left(1-x^{2}\right) y_{2}-x y_{1}=0$ and $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0 .$ (10 marks)	K5	CO4
	(b) Evaluate the minimum value of $u=x^{2}+y^{2}+z^{2}$ when $x+y+z=3 a$. (10 marks)		
14.	(a) Show that the evolute of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $(a x)^{2 / 3}+(b y)^{2 / 3}=$ $\left(a^{2}-b^{2}\right)^{2 / 3}$. (13 marks)	$\begin{aligned} & \text { K5 } \\ & \text { K5 } \end{aligned}$	$\begin{aligned} & \mathrm{CO} 4 \\ & \mathrm{CO} 4 \end{aligned}$
	(b) Prove that $\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2} x}}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} d x=\frac{\pi}{4} . \quad$ (7 marks)		

SECTION E

Answer any ONE of the following
($\mathbf{1 \times 2 0 = 2 0)}$
15. (a) Establish a reduction formula for $\int \sin ^{m} x \cos ^{n} x d x$, where m, n are positive integers. (7 marks)
(b) Evaluate $\iiint \frac{d x d y d z}{(x+y+z+1)^{3}}$ taken over the volume bounded by the planes $x=0, y=0$, $z=0$ and $\mathrm{x}+\mathrm{y}+\mathrm{z}=1$.
(13 marks)

(b) Evaluate $\int x^{m}\left(\log \left(\frac{1}{x}\right)\right)^{n} d x$.

(15 marks)		
(5 marks)	K6	CO5

