LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **CHEMISTRY**

THIRD SEMESTER – **NOVEMBER 2022**

UMT 3401 – MATHEMATICS FOR CHEMISTRY - II

Date: 01-12-2022 Dept. No. Time: 09:00 AM - 12:00 NOON

	SECTION A				
Ans	swer ALL the Questions				
1.	Answer the following	(5 x	(5 x 1 = 5)		
a)	Write recurrence formula of Gamma function.	K1	CO1		
b)	Define an ordinary differential equation.	K1	CO1		
c)	Define Laplace Transform.	K1	CO1		
d)	Write Newton's forward difference formula.	K1	CO1		
e)	State Lagrange's Theorem	K1	CO1		
2.	Choose the correct answer	(5 x 1	l = 5)		
a)	$\int_{0}^{\frac{\pi}{2}} \sin^{7} \theta \cos^{5} \theta d\theta = \underline{\qquad}$ a) 120 b) $\frac{1}{120}$ c) 140 d) $\frac{1}{140}$ Clairant's equation is of the form $\int_{0}^{1} \pi = \frac{dy}{dt} x + t$	K1	CO1		
	a) $z = \frac{1}{dx}x + c$ b) $z = px + qy + f(p,q)$ c) $z = \frac{x}{y} + \frac{y}{q} + c$ d) $z = px + qy + \frac{p}{x} + \frac{q}{y}$	K1	CO1		
c)	Which is correct? (a) $L(f'(t)) = SL(f(t))$ (b) $L(f'(t)) = SL(f(t)) - f(0)$ (c) $L(f'(t)) = S^2L(f(t))$ (d) $L(f'(t)) = S^2L(f(t)) - f(0)$	K1	C01		
d)	Gauss seidal method is method.(a) Iterative(b) Directive(c) Indirect(d) None	K1	CO1		
e)	If n is any integer and $(a, n) = 1$ then, $a^{\phi(n)} \equiv$ (a) $o(mod n)$ (b) $1(mod n)$ (c) $n(mod n)$ (d) $a(mod n)$	K1	CO1		

Max. : 100 Marks

3.	Fill in the blanks	($5 \ge 1 = 5$	
a)	$\frac{\partial(u,v)}{\partial(x,y)}$ denotes of u, v with respect to x, y .	K2	CO1	
b)	The linear differential equation of the first order is of the form	K2	CO1	
c)	If $L(f(t)) = F(s)$, then $L(f(at)) = $	K2	CO1	
d)	In numerical methods, a process of finding the unknown values that lie in between the data points is called	K2	CO1	
e)	A subset <i>H</i> of group <i>G</i> is called a subgroup of <i>G</i> if <i>H</i> forms a with respect to the binary operation in <i>G</i> .	K2	CO1	
4.	State True or False		$(5 \times 1 = 5)$	
a)	$\Gamma(n+1) = (n+1)!$ when n is a positive integer.	K2	CO1	
b)	If the auxiliary equation has two real and distinct roots m_1 and m_2 in a second order Linear differential equation, then $y = e^{m_1 x}$ and $y = e^{m_2 x}$ are solutions.	K2	CO1	
c)	$t^n f(t)$ is bounded near $t = 0$ for some number $n \ge 0$ is one of the sufficient conditions for the existence of Laplace Transforms.	K2	CO1	
d)	A sequence matrix is said to be diagonally dominant matrix, if for every row of the matrix, absolute value of diagonal element in a row is less than or equal to sum of the absolute values of other elements in that row.	K2	CO1	
e)	Any cyclic group is abelian.	K2	CO1	
	SECTION B			
An	$(2 \times 10 = 20)$			
5.	Change the order of integration in the integral $\int_0^a \int_{x^2/a}^{2a-x} xy dx dy$ and evaluate it.	K3	CO2	
6.	Let <i>G</i> denote the set of all matrices of the form $\begin{pmatrix} x & x \\ x & x \end{pmatrix}$ where $x \in R^*$. Prove that <i>G</i> is a group under matrix multiplication.	K3 CO2		
7.	Evaluate (i) $L\left(\frac{1-e^t}{t}\right)$ (ii) $L^{-1}\left(\frac{S-3}{S^2+4S+13}\right)$	K3	CO2	
8.	Find an iterative formula to find \sqrt{N} , where N is a positive number and hence find $\sqrt{12}$ correct to two decimal places.	K3	CO2	

			S	ECTION	C				
Answer any TWO of the following.					$(2 \times 10 = 20)$				
9. Determine $L^{-1}\left(\frac{s}{s^2a^2+b^2}\right)$.					K4	CO3			
10. (i) Find the volume of a segment of height <i>h</i> of a sphere of radius <i>a</i> . (ii) Evaluate $\iint xydxdy$ taken over the positive quadrant of the circle $x^2 + y^2 = a^2$:	K4	CO3	
11.	Solve $(D^2 + D + 1)y =$	$= x^2$.						K4	CO3
12.	Solve using Gauss Elimination method								
	2x + 3y - z = 5								
	4x + 4y - 3z = 3							K4	CO3
	2x - 3y + 2z = 2								
			S	ECTION	D				
Ans	wer any ONE of the fol	lowing.						(1 x	20 = 20)
13.	The following are data	from the	e steam tab	ole.					
	Temp $C^0(T)$	140	150	160	170	180			
	Pressure Kgf/cm ² (P)	3.685	4.854	6.302	8.076	10.225		К5	CO4
	Using Newton's formu and 175 ^{0.}	la, find t	he pressur	e of the s	team for	temperatu	res 142 ⁰		
14.	State and prove the rela	ationship	between	beta and g	gamma fi	unctions.		K5	CO4
			C.	ECTION					
Ang	war any ONE of the fal	lowing	D .	ECHON				(1 v)	20 - 20
Alls		$\frac{10}{2}$ v d^2	V			dv		(1 A)	20 – 20)
10.	Solve the equation $\frac{1}{dt}$	$\frac{5}{t^2} + 2\frac{3}{d}$	$\frac{2}{t} - 3y = 3$	sint giv	en that	$y = \frac{dy}{dt} =$	0 when	K6	CO5
	t=0.								
16.	 (i) Find the order of -1 and 3 in (R*,·) (ii) Find the order of 2 & 3 in (Z₈, ⊕) (iii) Find all the left cosets of {0,3,6,9} in (Z₁₂,⊕) 								
								K6	CO5
	(iv) Find all the generators of the cyclic group (Z_8, \bigoplus)								
	(v) Why $(N, +)$ is not	a group'	?						
