LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

THIRD SEMESTER - NOVEMBER 2022

UMT 3501 – ABSTRACT ALGEBRA

Dept. No. Date: 24-11-2022

Max.: 100 Marks

Time: 09:00 AM - 12:00 NOON

SECTION - A							
Ans 1	Answer the following	(5 v	1 – 5)				
1 •	Answer the following		I = 3				
a)	Define equivalence relation on a set S.	KI	01				
b)	Find the order of 2 in (Z_8, \oplus) .	K1	CO1				
c)	Express the following permutation as a product of disjoint cycles						
	$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \end{pmatrix}$	K1	CO1				
	$(4 \ 2 \ 5 \ 1 \ 3)$						
d)	What is cipher text?	K1	CO1				
e)	Define unit in a ring <i>R</i> .	K1	CO1				
2.	Choose the correct answer	$(5 \times 1 = 5)$					
a)	From the following, which is not a group?						
	a) (<i>z</i> , +)						
	b)(N,+)	K1	CO1				
	c) (Q,+)						
	d) None						
b)	If G is a group of even order, then it has an element $a \neq e$ satisfies						
	(i) $a^2 = e$						
	(ii) $a^2 \neq e$	K 1	CO1				
	(iii) $a^n = e$						
	(iv) $a^n \neq e$						
c)	An Isomorphism of G onto itself is called						
	(i) Homomorphism (ii) Epimorphism	K1	CO1				
	(iii) Automorphism (iv) Endomorphism						
d)	The characteristic of an integral domain <i>D</i> is						
	a) Zero always						
	b) a prime number always	K1	CO1				
	c) either zero or a prime number						
	d) None						
e)	The private key in asymmetric key cryptography is kept by	K1	CO1				

	a) Sender			
	b) Receiver			
	c) Sender and receiver			
	d) All the connected devices to the network			
3.	Fill in the blanks	$(5 \times 1 = 5)$		
a)	If a prime number divides the product of certain integers it must divide at	к2	CO1	
	least of these integers.	112		
b)	In a finite group the order of every element is	K2	CO1	
c)	Every permutation is of its transpositions.	K2	CO1	
d)	A commutative division ring is called	K2	CO1	
e)	If n objects are distributed over m places, and if $n > m$, then some place receives at least two objects. This is called	K2	CO1	
4.	State True or False	(5 x 1 = 5)		
a)	If a and b are relatively prime, then we can find integers m and n such that $ma + a = a$	K2	CO1	
	nb = 2.			
b)	Every cyclic group is abelian.	K2	CO1	
c)	Any two cyclic groups with the same number of elements are isomorphic.	K2	CO1	
d)	If p is a prime number, then the ring of integers $mod p$ is not a field.	K2	CO1	
e)	RSA is an algorithm used for symmetric key cryptography.	K2	CO1	
	SECTION - B			
Answer any TWO of the following.			$(2 \times 10 = 20)$	
5.	Prove that any positive integer $a > 1$ can factored in a unique way as $a =$	К3	CO2	
	$p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}$, where $p_1 > p_2 > \dots p_t$ are prime numbers and where each $\alpha_i > 0$.			
6.	If G is a finite group and H is a subgroup of G, prove that $o(H)$ is a divisor of $o(a)$.	K3	CO2	
7.	If G is a group, then $\mathcal{A}(G)$, the set of all automorphisms of G is also a group.	K3	CO2	
8.	Prove that every finite integral domain is a field.	K3	CO2	
	SECTION - C	L		
Ans	wer any TWO of the following.	(2 x 10) = 20)	
9.	Prove that in a Euclidean ring d is the greatest common divisor of any two	V 4		
	elements $a \& b$ in R and also prove that $d = \lambda a + \mu b$ for some $\lambda, \mu \in \mathbb{R}$.	К4		
10.	If Φ is a homomorphism of G into \overline{G} with kernel k , prove that k is a normal	K4	CO3	
	subgroup of G.	•		
11.	Let <i>R</i> be a commutative ring with unit element whose only ideals are $\{o\}$ and <i>R</i> itself. Prove that <i>R</i> is a field.	K4	CO3	
12.	If H and K are two subgroups of G . Prove that HK is a subgroup of G if and only	K4	CO3	
	If $HK = KH$.			

	SECTION - D			
Answer any ONE of the following.			$(1 \times 20 = 20)$	
13.	Every group is isomorphic to a subgroup of $A(s)$ for some appropriate S.	K5	CO4	
14.	State & prove Unique Factorization theorem in Euclidean ring <i>R</i> .	K5	CO4	
	SECTION - E			
Answer any ONE of the following.		$(1 \times 20 = 20)$		
15.	 (i)If H and K are finite subgroups of G of orders o(H) and o(K) respectively, then prove that o(HK) = O(H) O(K) O(H) O(K) (ii) Which of the following groups are cyclic? If it is cyclic, find all the generators of the group. (a) The group of symmetries of an equilateral triangle (b) The group of symmetries of a rectangle. (c) (Q,+) (d)(6z,+) 	K6	CO5	
	(e) (z_4, \oplus) (5 Marks)			
16.	 (i)If U is an ideal of R, prove that R/U is a ring and is a homomorphic image of R. (15 marks) (ii)Find encoded message of HELLO WORLD using Julius Ceasar algorithm. (5 Marks) 	K6	CO5	

@@@@@@@