LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - NOVEMBER 2022
UMT 3502 - DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORM

Date: 03-12-2022
Time: 09:00 AM - 12:00 NOON
Max. : 100 Marks

SECTION A

Answer ALL the Questions			
1.	Answer the following: $1=5)$		(5x
a)	Write the solution of the equation $\frac{d y}{d x}=\frac{y+a}{x-b}$.	K1	CO1
b)	Identify the type of the equation $(1+2 x)^{2} \frac{d^{2} y}{d x^{2}}+(1+2 x) \frac{d y}{d x}+y=8(1+2 x)^{2}$.	K1	CO1
c)	Define complete integral.	K1	CO1
d)	Give an expression for $L\left(f^{\prime \prime}(t)\right)$.	K1	CO1
e)	What is $L^{-1}\left(\frac{1}{s}-\frac{1}{s+10}\right)$?	K1	CO1
2.	Fill in the blanks $1=5)$		(5 x
a)	The order of the ODE $(x+1) \frac{d y}{d x}+1=2 e^{-y}$ is	K1	CO1
b)	Second order linear ODE with variable coefficients is also known as	K1	CO1
c)	The solution for the equation $p q=1$ is	K1	CO1
d)	In Laplace transform s is called as ______	K1	CO1
e)	$L^{-1}\left[\frac{s}{(s-1)^{3}}\right]$ is	K1	CO1
3.	Choose the correct answer for the following $1=5)$		(5 x
a)	The degree of the differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{\frac{2}{3}}+2 \frac{d y}{d x}+y=0$ is (i) 1 (ii) 2 (iii) 3 (iv) 4	K2	CO1
b)	The particular integral of the differential equation is $\left(D^{2}-4\right) y=e^{3 x}$ is (i) $\frac{e^{3 x}}{4}$ (ii) $\frac{e^{3 x}}{5}$ (iii) $\frac{e^{4 x}}{4}$ (iv) $\frac{e^{3 x}}{3}$	K2	CO1
c)	The solution of $z=p x+q y+p q$ is (i) $z=p+q+p q$ (ii) $z=a x+b y+p b$ (iii) $z=p a+q b+a b$ (iv) $z=c x+d y+c d$	K2	CO1
d)	$L\left(\frac{t^{5}}{3}\right)=$ (i) $\frac{10}{s^{6}}$ (ii) $\frac{40}{s^{5}}$ (iii) $\frac{30}{s^{6}}$ (iv) $\frac{40}{s^{6}}$		

e)	$L^{-1}\left(\frac{a}{s^{2}+a^{2}}\right)$ is (i) $\sin a t$ (ii) $\cos a t$ (iii) $\sinh a t$ (iv) $\cosh a t$	K2	CO1
4.	Say TRUE or FALSE $1=5$		(5 x
a)	Linear ODE is a particular case of Bernoulli's equation.	K2	CO1
b)	The complementary function and general solution are different for ($D^{2}-2 m D+$ $\left.m^{2}\right) y=0$.	K2	CO1
c)	Particular integral is a singular integral.	K2	CO1
d)	It is a necessary condition that a function should be of exponential order to have Laplace transform.	K2	CO1
e)	Laplace technique is used to evaluate certain integrals.	K2	CO1
SECTION B			
Answer any TWO of the following in 100 words 20)		$(2 \times 10=$	
5.	A body of mass m falling from rest is subject to force of gravity and air resistance proportional to the square of velocity. If it falls through a distance x and possess a velocity v at that instant, prove that $\frac{2 k x}{m}=\log \frac{a^{2}}{a^{2}-v^{2}}$ where $m g=k a^{2}$. (10 marks)	K3	CO2
6.	Solve $x^{2} \frac{d^{2} y}{d x^{2}}+4 x \frac{d y}{d x}+2 y=e^{x}$. (10 marks)	K3	CO2
7.	Solve the equation $p+q=x+y$. (10 marks)	K3	CO 2
8.	Find $L\left(\frac{\sin ^{2} t}{t}\right)$. (10 marks)	K3	CO2
SECTION C			
Answer any TWO of the following in 100 words 20)		($2 \times 10=$	
9.	Solve the non-homogeneous equation $\frac{d y}{d x}=\frac{x+2 y-3}{2 x+y-3}$. (10 marks)	K4	CO3
10.	Reduce the equation $(5+2 x)^{2} \frac{d^{2} y}{d x^{2}}-6(5+2 x) \frac{d y}{d x}+8 y=6 x$ to a linear homogeneous equation and hence solve. (10 marks)	K4	CO3
11.	Find the Laplace transform of rectangular wave given by $f(t)=\left\{\begin{array}{c}1, \text { if } 0<t<b \\ -1, \text { if } b<t<2 b\end{array}\right.$. (10 marks)	K4	CO3
12.	Determine $L^{-1}\left(\frac{1}{(s+1)\left(s^{2} 2 s+2\right)}\right)$. (10 marks)	K4	CO3
SECTION D			
Answer any ONE of the following in 250 words 20)		$(1 \times 20=$	
13.	(a) Solve $\left(D^{2}+3 D+2\right) y=e^{-x}+x^{2}+\cos x$. (10 marks)	K5	CO4
	(b) Find the general solution of $(y+z) p+(z+x) q=x+y$. (10 marks)		

14.	(a) Determine Laplace transform of $(\sin a t-a t \cos a t)$. (10 marks)	K5	CO4
	(b) Evaluate $\int_{0}^{\infty} \frac{e^{-t}-e^{-2 t}}{t} d t$. (10 marks)		
SECTION E			
Answer any ONE of the following in 250 words 20)		($1 \times 20=$	
15.	(a) Construct the auxiliary equation for Charpit's method and hence determine the solution for $p^{2}+q^{2}-2 p x-2 q y+1=0$. (12 marks)	K6	CO5
	(b) Reduce the equation $\frac{d y}{d x}-y \tan x=\frac{\sin x \cos ^{2} x}{y^{2}}$ to the linear form and solve. marks)		
16.	(a) Construct the function for the diagram shown below (b) Find the function y if given $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+5 y=4 e^{-t}$ given that $y=\frac{d y}{d t}=0$ when $\begin{aligned} & t=0 . \\ & (2+18 \text { marks }) \end{aligned}$	K6	CO5

