# LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034 

## B.Sc. DEGREE EXAMINATION - MATHEMATICS

FOURTH SEMESTER - NOVEMBER 2022 UMT 4501 - REAL ANALYSIS-I

Date: 26-11-2022
Time: 09:00 AM - 12:00 NOON

## PART - A

Answer ALL the questions:

1. Define a bijection on $\boldsymbol{R}$. Give an example.
2. State Cantor's theorem.
3. Write down the triangle inequality in $\boldsymbol{R}$.
4. Define a bounded sequence in $\boldsymbol{R}$.
5. State the Archimedean property.
6. Define a nested interval in $\boldsymbol{R}$.
7. Find the limit of the sequence $\left(\frac{1}{n^{2}}\right)$.
8. Write the Cauchy convergence criterion.
9. State the comparison test.
10. Define an absolutely convergent series.

## PART - B

Answer any FIVE of the following:
Marks)
11. Prove that $1^{2}+2^{2}+\cdots+n^{2}=\frac{1}{6} n(n+1)(2 n+1)$.
12. Let $a, b, c$ be any elements of $\boldsymbol{R}$. Then prove the following.
a) If $a>b$ and $b>c$, then $a>c$
b) If $a>b$, then $a+c>b+c$
13. Prove that there exists a positive real number $x$ such that $x^{2}=2$.
14. State and prove the Squeeze theorem.
15. Define rearrangement. State and prove the rearrangement theorem.
16. Justify the statement, "If a series in $\boldsymbol{R}$ is absolutely convergent, then it is convergent".
17. Explain the principle of mathematical induction.
18. State and prove Bolzano Weierstrass theorem.

## PART - C

## Answer any TWO of the following:

19. a) State and prove the De Morgan laws.
b) Determine the set $A=\left\{x \in \boldsymbol{R}: x^{2}>3 x+4\right\}$.
20. a) Prove that the set $\boldsymbol{R}$ of all real numbers is uncountable.
b) Prove that a convergent sequence of real numbers is bounded.
21. a) State ratio, Raabe's, Dirichlet and Abel's tests.
b) Test the convergency of the sequences $(n)$ and $\left((-1)^{n}\right)$. Justify.
22. a) State and prove the alternating series test.
b) Prove that a sequence of real numbers is convergent if and only if it is a Cauchy sequence.

$$
(10+10)
$$

## \$\$\$\$\$\$\$

