LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 **B.Sc.** DEGREE EXAMINATION – MATHEMATICS FOURTH SEMESTER - NOVEMBER 2022 UMT 4501 – REAL ANALYSIS-I Date: 26-11-2022 Dept. No. Max.: 100 Marks Time: 09:00 AM - 12:00 NOON PART – A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL the questions:

- 1. Define a bijection on **R**. Give an example.
- 2. State Cantor's theorem.
- 3. Write down the triangle inequality in R.
- 4. Define a bounded sequence in **R**.
- 5. State the Archimedean property.
- 6. Define a nested interval in **R**.
- 7. Find the limit of the sequence $\left(\frac{1}{n^2}\right)$.
- 8. Write the Cauchy convergence criterion.
- 9. State the comparison test.
- 10. Define an absolutely convergent series.

PART – B

Answer any FIVE of the following:

Marks)

- 11. Prove that $1^2 + 2^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$.
- 12. Let *a*, *b*, *c* be any elements of *R*. Then prove the following.
 - a) If a > b and b > c, then a > c
 - b) If a > b, then a + c > b + c
- 13. Prove that there exists a positive real number x such that $x^2 = 2$.
- 14. State and prove the Squeeze theorem.
- 15. Define rearrangement. State and prove the rearrangement theorem.
- 16. Justify the statement, "If a series in **R** is absolutely convergent, then it is convergent".

17. Explain the principle of mathematical induction.

18. State and prove Bolzano Weierstrass theorem.

 \times 8 = 40

(5

PART – C	
Answer any TWO of the following:	(2 × 20 = 40 Marks)
19. a) State and prove the De Morgan laws.	
b) Determine the set $A = \{x \in \mathbb{R} : x^2 > 3x + 4\}.$	(10 + 10)
20. a) Prove that the set \boldsymbol{R} of all real numbers is uncountable.	
b) Prove that a convergent sequence of real numbers is bounded.	(10 + 10)
21. a) State ratio, Raabe's, Dirichlet and Abel's tests.	
b) Test the convergency of the sequences (<i>n</i>) and $((-1)^n)$. Justify.	(10 + 10)
22. a) State and prove the alternating series test.	
b) Prove that a sequence of real numbers is convergent if and only if it is a Ca	uchy sequence.
	(10 + 10)

\$\$\$\$\$\$