LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 B.Sc. DEGREE EXAMINATION – MATHEMATICS FIFTH SEMESTER – NOVEMBER 2022 UMT 5501 – REAL ANALYSIS - II Date: 23-11-2022 Dept. No. Time: 09:00 AM - 12:00 NOON			
PART – A			
Q. No Answer ALL Questions (10 x 2 = 20 Marks)			
1	Define signum function.		
2	Using limit theorems, prove that $\lim_{x\to 2} \left(\frac{x^3-4}{x^2+1}\right) = \frac{4}{5}$.		
3	Define Lipschitz function.		
4	Show that cosine function is continuous on \mathbb{R} .		
5	If $f: I \to \mathbb{R}$ has a derivative at $c \in I$, then prove that f is continuous at c .		
6	Using L'Hospital's rule, evaluate $\lim_{x\to\infty} (e^{-x}x^2)$.		
7	Prove that every constant function on $[a, b]$ is Riemann integrable on $[a, b]$.		
8	Define tagged partition of an interval $[a, b]$.		
9	Define open set.		
10	Define compact set.		
PART – B			
Answer any FIVE Questions (5 x 8 = 40 Marks)			
11	(i) If $f: A \to \mathbb{R}$ and if c is a cluster point of A, then prove that f can have only one limit at c.	(4)	
	(ii) Using Squeeze theorem of limit, prove that $\lim_{x\to 0} \left(\frac{\sin x}{x}\right) = 1$.	(4)	
12	State and prove uniform continuity theorem.	(8)	
13	Let I, J be intervals in \mathbb{R} , let $g: I \to \mathbb{R}$ and $f: J \to \mathbb{R}$ be functions such that $f(J) \subseteq I$, and let $c \in J$. If f is differentiable at c and g is differentiable at $f(c)$, then prove that the composite function $g \circ f$ is differentiable at c and $(g \circ f)'(c) = g'(f(c)), f'(c)$.	(8)	
14	State and prove the squeeze theorem for integration.	(8)	

15	If <i>K</i> is a compact subset of \mathbb{R} and $f: K \to \mathbb{R}$ is injective and continuous, then prove that f^{-1} is continuous on $f(K)$.	(8)		
16	State and prove Mean value theorem.	(8)		
17	If $f:[a,b] \to \mathbb{R}$ is continuous on $[a,b]$ then prove that $f \in \mathcal{R}[a,b]$.	(8)		
18	Prove that a subset of \mathbb{R} is closed if and only if it contains all its cluster points.	(8)		
PART – C				
	Answer any TWO Question $(2 \times 20 = 20)$	Marks)		
19	 (a) Let A ⊆ ℝ, let f and g be functions on A to ℝ, and let c ∈ ℝ be a cluster point of A.Further, let b ∈ ℝ. If lim_{x→c} f = L and lim_{x→c} g = M, then prove that (i) lim_{x→c} (f + g) = L + M, (ii) lim_{x→c} (f g) = LM, (iii) lim_{x→c} bf = bL and (iv) If h: A → ℝ, if h(x) ≠ 0 for all x ∈ A, and if lim_{x→c} h = H ≠ 0, then prove that lim_{x→c} (f/h) = L/H. 	(12)		
	 (b) Let f: A → R and let c be a cluster point of A.Prove that the following are equivalent (i) lim_{x→c} f = L. (ii) For every sequence (x_n) in A that converges to c such that x_n ≠ c for all n ∈ N, the sequence (f(x_n)) converges to L. 	(8)		
20	(a) Let $I = [a, b]$ and let $f : I \to \mathbb{R}$ be continuous on <i>I</i> . If $f(a) < 0 < f(b)$, or if $f(a) > 0 > f(b)$, then prove that there exists a number $c \in (a, b)$ such that $f(c) = 0$.	(14)		
	(b) State and prove boundedness theorem.	(6)		
21	(a) Show that the union of an arbitrary collection of open subsets in \mathbb{R} is open.	(5)		
	(b) State and prove Additivity theorem of Riemann integrable.	(15)		
22	(a) If K is compact subset of R , then prove that K is closed and bounded.	(8)		
	(b) State and prove Taylor's theorem.	(12)		
	@@@@@@@			